Gosh, I hate "Tapatalk"!

First if a set of linear equations is "independent", that is, each vectors whose components are the coefficients of the same unknown are independent (equivalently the matrix of coefficients has non-zero determinant), then there must be exactly one solution and vice versa. If the system of equations is NOT independent, then there may be no solution or an infinite number of solutions. Conversely, if a system of linear equations has either no solution or an infinite number of solutions then the equation are "dependent".

Is that what you mean?