Arctan identity

Nov 2016
11
0
Uk
Hey I'm trying to answer this without a calculator.
Arctan(2+sqrt(3)) with calculator it is 75.
 
Last edited by a moderator:
Sep 2007
349
67
USA
I assume that is in degrees. You can reference a table of the unit circle to see that is the case. If you don't have a table that precise, use the half-angle formula of tangent for 150 degrees.
 
Last edited:

skipjack

Forum Staff
Dec 2006
21,301
2,377
tan(75°) = tan(45° + 30°) = (tan(45°) + tan(30°))/(1 - tan(45°)tan(30°)).

As tan(45°) = 1 and tan(30°)= 1/√3, tan(75°) = (√3 + 1)/(√3 - 1) = 2 + √3.
 
  • Like
Reactions: 1 person

skeeter

Math Team
Jul 2011
3,196
1,724
Texas
$0 < t < 90$

$\tan{t}=2+\sqrt{3} \implies \sin{t}=2\cos{t}+\sqrt{3}\cos{t}$

$2\cos{t}=\sin{t}-\sqrt{3}\cos{t}$

$\cos{t}=\dfrac{1}{2}\sin{t}-\dfrac{\sqrt{3}}{2}\cos{t}$

$\cos{t}=\sin(150)\sin{t}+\cos(150)\cos{t}$

$\cos{t}=\cos(150-t) \implies t=150-t \implies t = 75$
 
  • Like
Reactions: 1 person

skipjack

Forum Staff
Dec 2006
21,301
2,377
arctan.png
arctan(2 + √3) = 60° + 15° = 75°.
 
  • Like
Reactions: 1 person

greg1313

Forum Staff
Oct 2008
8,007
1,174
London, Ontario, Canada - The Forest City
$$2+\sqrt3=\frac{\sin60+\sin90}{\sin150}= \frac{2\sin^275}{2\cos75\sin75}=\tan75\implies \arctan(2+ \sqrt3)=75^\circ$$
 
Last edited:
  • Like
Reactions: 1 person

skipjack

Forum Staff
Dec 2006
21,301
2,377
Using cot(A) = csc(2A) + cot(2A), 2 + √3 = csc(30°) + cot(30°) = cot(15°) = tan(75°).
 
  • Like
Reactions: 1 person

topsquark

Math Team
May 2013
2,381
993
The Astral plane
Wow! The solutions just keep on coming! :dance:

-Dan
 
Similar Math Discussions Math Forum Date
Calculus
Trigonometry
Trigonometry
Algebra