My Math Forum How do I prove this seemingly simple trigonometric identity
 User Name Remember Me? Password

 Trigonometry Trigonometry Math Forum

 December 11th, 2014, 07:15 PM #1 Senior Member   Joined: Aug 2014 From: India Posts: 343 Thanks: 1 How do I prove this seemingly simple trigonometric identity $\displaystyle a=\sinθ+\sinϕ$ $\displaystyle b=\tanθ+\tanϕ$ $\displaystyle c=\secθ+\secϕ$ Show that, $\displaystyle 8bc=a[4b^2 + (b^2-c^2)^2]$ I tried to solve this for hours and have gotten nowhere. Here's what I've got so far: $\displaystyle \\a= 2\sin(\frac{\theta+\phi}{2})\cos(\frac{\theta-\phi}{2})$ $\displaystyle \\ b = \frac{2\sin(\theta+\phi)}{\cos(\theta+\phi)+ \cos(\theta-\phi)}$ $\displaystyle \\c=\frac{2(\cos\theta+\cos\phi)}{\cos(\theta+\phi )+\cos(\theta-\phi)}$ $\displaystyle \\a^2 = \frac{\sin^2(\theta+\phi)[\cos(\theta+\phi)+1]} {\cos(\theta+\phi)+1}\\\cos(\theta-\phi)=\frac{ca}{b}-1\\\sin^2(\frac{\theta+\phi}{2})=\frac{2a^2b}{4(ca +b)}$ Last edited by skipjack; December 12th, 2014 at 12:44 AM.
 December 12th, 2014, 02:59 AM #2 Global Moderator   Joined: Dec 2006 Posts: 20,370 Thanks: 2007 \displaystyle \begin{align*}4\cos^2(\theta)\cos^2(\phi)b^2 &= 4\cos^2(\theta)\cos^2(\phi)(\tan(\theta) + \tan(\phi))^2 \\ &= 4(\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi))^2 \\ &= 4\sin^2(\theta + \phi) \\ &= 16\sin^2((\theta + \phi)/2)\cos^2((\theta + \phi)/2) \\ &= 16(1 - \cos^2((\theta + \phi)/2))\cos^2((\theta + \phi)/2) \\ &= 16\cos^2((\theta + \phi)/2) - 16\cos^4((\theta + \phi)/2)\end{align*} \displaystyle \begin{align*}c^2 - b^2 &= \sec^2\theta + \sec^2\phi + 2\sec(\theta)\sec(\phi) - (\tan^2\theta + \tan^2\phi + 2\tan(\theta)\tan(\phi)) \\ &= 2 + 2\sec(\theta)\sec(\phi) - 2\tan(\theta)\tan(\phi)\end{align*} \displaystyle \begin{align*}\cos(\theta)\cos(\phi)(c^2 - b^2) &= 2(\cos(\theta)\cos(\phi) + 1 - \sin(\theta)\sin(\phi)) \\ &= 2(1 + \cos(\theta + \phi)) \\ &= 4\cos^2((\theta + \phi)/2)\end{align*} $\displaystyle \cos^2(\theta)\cos^2(\phi)(b^2 - c^2)^2 = 16\cos^4((\theta + \phi)/2)$ $\displaystyle \cos^2(\theta)\cos^2(\phi)(4b^2 + (b^2 - c^2)^2) = 16\cos^2((\theta + \phi)/2)$ \displaystyle \begin{align*}8\cos^2(\theta)\cos^2(\phi)bc/a &= 8\cos^2(\theta)\cos^2(\phi)(\tan(\theta) + \tan(\phi))(\sec(\theta) + \sec(\phi))/(\sin(\theta) + \sin(\phi)) \\ &= 8(\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi))(\cos(\theta) + \cos(\phi))/(\sin(\theta) + \sin(\phi)) \\ &= 8\sin(\theta + \phi)(\cos(\theta) + \cos(\phi))/(\sin(\theta) + \sin(\phi)) \\ &= \frac{8(2\sin((\theta + \phi)/2)\cos((\theta + \phi)/2))(2\cos((\theta + \phi)/2)\cos((\theta - \phi)/2))}{2\sin((\theta + \phi)/2)\cos((\theta - \phi)/2)} \\ &= 16\cos^2((\theta+\phi)/2)\end{align*} The desired result follows.

 Tags identity, prove, seemingly, simple, trigonometric

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post matemagia Trigonometry 4 August 30th, 2012 06:40 PM OriaG Trigonometry 2 August 13th, 2012 03:35 PM afrim Trigonometry 8 October 1st, 2011 01:59 AM coolguyadarsh Trigonometry 1 April 23rd, 2011 08:32 AM chnixi Algebra 1 August 19th, 2009 03:52 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top