My Math Forum one page proof of Fermat's Last Theorem

 Trigonometry Trigonometry Math Forum

 March 16th, 2019, 08:37 AM #1 Member   Joined: Mar 2019 From: california Posts: 57 Thanks: 0 one page proof of Fermat's Last Theorem I am sending you an invitation to see the one page proof of Fermat's Last Theorem. This proof uses Fermat's Right Triangle Theorem to prove the Theorem. Also included in the proof is the diagram Fermat could not include in the margin of the book. It is an amazing proof. Last edited by skipjack; March 24th, 2019 at 02:42 PM.
 March 16th, 2019, 09:01 AM #2 Math Team     Joined: May 2013 From: The Astral plane Posts: 2,203 Thanks: 901 Math Focus: Wibbly wobbly timey-wimey stuff. If it could be done by simple Trigonometry, it would have been found out loooooong ago. Ain't buyin' it. -Dan Thanks from Denis
March 16th, 2019, 10:17 AM   #3
Math Team

Joined: Oct 2011

Posts: 14,597
Thanks: 1038

Quote:
 Originally Posted by topsquark If it could be done by simple Trigonometry, it would have been found out loooooong ago. Ain't buyin' it.
AND...IF a proof is ever found, what will have been gained?

 March 16th, 2019, 04:13 PM #4 Senior Member   Joined: Aug 2012 Posts: 2,329 Thanks: 720 For what it's worth, Fermat lived 30 years after writing that note in his copy of Diophantus but never mentioned FLT again. He must have realized he didn't have it else he'd have written up his marvelous demonstration. ps -- Today I learned! https://en.wikipedia.org/wiki/Fermat...iangle_theorem Last edited by Maschke; March 16th, 2019 at 05:11 PM.
March 16th, 2019, 08:29 PM   #5
Senior Member

Joined: Aug 2012

Posts: 2,329
Thanks: 720

Quote:
 Originally Posted by michaelcweir I am sending you an an invitation to see the one page proof of Fermat's Last Theorem.
Question. Where in your proof do you use that n > 2? The way it is right now, your proof goes through for n = 2, but then it's wrong since there are FLT solutions for n = 2.

March 17th, 2019, 11:28 AM   #6
Senior Member

Joined: Aug 2012

Posts: 2,329
Thanks: 720

Quote:
 Originally Posted by michaelcweir I am sending you an an invitation to see the one page proof of Fermat's Last Theorem. [/youtube]
Can you explain the meaning of $\alpha$?

I'm walking through your proof using the standard Pythagorean triple $3^2 + 4^2 = 5^2$. As far as I can tell, your proof shows this triple to be impossible, since you never used the fact that $n > 2$. You need to explain this else your proof is cooked.

So in this example, $x = 3$, $y = 4$, $z = 5$, and $n = 2$.

Now you say that $W = x^{\frac{n}{2}} - \alpha$. In this case we have $W = x - \alpha$ or $W = 3 - \alpha$.

So what is the meaning of $\alpha$? You write that $0 < \alpha < 1$ but I don't see what $\alpha$ is supposed to be. Do you mean to simply take $W = x$ in this case?

I hope you will take the time to respond to these concerns. To sum up, my questions are:

1) Where do you use that $n > 2$? Without that fact you have disproved the well-known existence of Pythagorean triples.

2) What is $\alpha$? In the case of $x = 3$, $y = 4$, $z = 5$, and $n = 2$, when you write that $W = 3 - \alpha$, what is $\alpha$?

ps -- Fermat's right triangle theorem asserts that not all of the labelled sides can be integers. But in the case at hand, if $0 < \alpha < 1$ then $W = 3 - \alpha$ is already not an integer, so of course you haven't proved anything.

On the other hand if $\alpha = 0$, then all the $\alpha$ terms in your squaring operations are zero and you have no contradiction.

I would say at this point that this basic example of $9 + 16 = 25$ cooks your proof. I do await your response.

Last edited by Maschke; March 17th, 2019 at 11:48 AM.

 March 17th, 2019, 04:02 PM #7 Member   Joined: Mar 2019 From: california Posts: 57 Thanks: 0 0
 March 17th, 2019, 04:03 PM #8 Senior Member   Joined: Aug 2012 Posts: 2,329 Thanks: 720 ps -- Typo. You have $W = 5 = \alpha$, not $3 - \alpha$. Same objection. If $\alpha$ is strictly positive then $W$ is already a non-integer so you've proved nothing. But if $\alpha$ is zero, then all the $\alpha$ terms in your $W^2$ and similar expressions are zero, so again you've proved nothing. Your basic problem is that you haven't said what $\alpha$ is. And of course your "proof" would go through for $n = 2$, denying the existence of Pythagorean triples.
 March 18th, 2019, 09:51 AM #9 Member   Joined: Mar 2019 From: california Posts: 57 Thanks: 0 You really don't know what you are taking about, do you? If you let a = 0 you have every case of a triplet for n=2. (Z-2)(n) + (Z-1)(n) < Z(n) for every n>2 for n = 3, 3(3) + 4(3) < 5(3) for example. Other examples are 4,5,6 and 5,6,7. So the right triangle formed with legs 3(3/2) and 4(3/2) must have a hypotenuse that is shorter than 5(3/2); a designates that difference. Last edited by skipjack; March 24th, 2019 at 02:52 PM.
March 18th, 2019, 11:36 AM   #10
Senior Member

Joined: Oct 2009

Posts: 803
Thanks: 301

Quote:
 Originally Posted by michaelcweir You really don't know what you are taking about, do you?
And here we go. The crackpot appears. It was just a matter of time.

Trust me, Maschke is very well-versed in mathematics. He definitely knows what he's talking about.
You, however, didn't even write down a proof. You just posted a video and didn't even define your terms. Maschke has very politely answered you and pointed out flaws in your reasoning. He has stayed entirely professional and talked about the math at all times. You, of course, didn't like it that he didn't start to worship you immediately, so you lash out angrily... The sign of a true crackpot!!

If I ever prove something and show it to somebody as gifted as Maschke, I would definitely take his questions and criticisms very seriously! But that is the difference between you and me. I just want to learn and improve myself. You just want validation.

Last edited by skipjack; March 24th, 2019 at 02:39 PM.

 Tags fermat, page, proof, theorem

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post moussaid521 Number Theory 1 December 18th, 2016 09:02 PM mathsman1 Math 14 July 9th, 2016 05:45 PM MrAwojobi Number Theory 39 August 5th, 2014 10:34 AM MrAwojobi Number Theory 20 June 16th, 2014 08:32 PM jhon13 Algebra 4 May 24th, 2012 08:26 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top