My Math Forum  

Go Back   My Math Forum > High School Math Forum > Trigonometry

Trigonometry Trigonometry Math Forum


Thanks Tree1Thanks
  • 1 Post By topsquark
Reply
 
LinkBack Thread Tools Display Modes
April 16th, 2018, 11:05 AM   #1
Newbie
 
Joined: Apr 2018
From: East London

Posts: 12
Thanks: 0

Question General Solution

Determine the General Solution

4cos^2 (-x) - Sin (2x-180)= tan^2 675
Vee88 is offline  
 
April 16th, 2018, 01:09 PM   #2
Math Team
 
topsquark's Avatar
 
Joined: May 2013
From: The Astral plane

Posts: 1,855
Thanks: 751

Math Focus: Wibbly wobbly timey-wimey stuff.
Quote:
Originally Posted by Vee88 View Post
Determine the General Solution

4cos^2 (-x) - Sin (2x-180)= tan^2 675
$\displaystyle \cos(-x) = \cos(x)$

$\displaystyle \sin(2x - 180) = -\sin(2x)$

$\displaystyle \tan(675) = \tan(315) = \tan(-45) = -\tan(45) = -1$

So your equation is now
$\displaystyle 4 \cos^2(x) + \sin(2x) = 1$

Can you finish?

-Dan
Thanks from SDK

Last edited by skipjack; April 16th, 2018 at 03:32 PM.
topsquark is offline  
April 16th, 2018, 03:35 PM   #3
Global Moderator
 
Joined: Dec 2006

Posts: 19,302
Thanks: 1688

Already solved here.
skipjack is online now  
Reply

  My Math Forum > High School Math Forum > Trigonometry

Tags
general, solution



Thread Tools
Display Modes


Similar Threads
Thread Thread Starter Forum Replies Last Post
Getting the General solution The_Ys_Guy Differential Equations 10 April 19th, 2018 12:36 PM
general solution eulid Differential Equations 1 November 26th, 2017 04:44 AM
General solution woo Differential Equations 1 April 27th, 2015 04:51 PM
General Solution AzraaBux Algebra 4 May 31st, 2013 07:13 AM
General Solution of a PDE mathbalarka Calculus 11 May 5th, 2013 11:01 AM





Copyright © 2018 My Math Forum. All rights reserved.