My Math Forum discrete topology, product topology

 Topology Topology Math Forum

 December 2nd, 2008, 02:04 PM #1 Newbie   Joined: Nov 2008 Posts: 13 Thanks: 0 discrete topology, product topology For each $n \in \omega$, let $X_n$ be the set $\{0, 1\}$, and let $\tau_n$ be the discrete topology on $X_n$. For each of the following subsets of $\prod_{n \in \omega} X_n$, say whether it is open or closed (or neither or both) in the product topology. (a) $\{f \in \prod_{n \in \omega} X_n | f(10)=0 \}$ (b) $\{f \in \prod_{n \in \omega} X_n | \text{ }\exists n \in \omega \text{ }f(n)=0 \}$ (c) $\{f \in \prod_{n \in \omega} X_n | \text{ }\forall n \in \omega \text{ }f(n)=0 \Rightarrow f(n+1)=1 \}$ (d) $\{f \in \prod_{n \in \omega} X_n | \text{ }|\{ n \in \omega | f(n)=0 \}|=5 \}$ (e)$\{f \in \prod_{n \in \omega} X_n | \text{ }|\{ n \in \omega | f(n)=0 \}|\leq5 \}$ Recall that $\omega= \mathbb{N} \cup \{0\}$

 Tags discrete, product, topology

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post bigli Topology 8 November 21st, 2013 11:54 AM vercammen Topology 1 October 19th, 2012 12:06 PM matthematical Topology 2 September 20th, 2011 03:20 PM toti Topology 1 June 17th, 2010 02:58 PM genoatopologist Topology 0 December 6th, 2008 11:09 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top