My Math Forum general term serie

 Real Analysis Real Analysis Math Forum

 May 25th, 2013, 01:45 PM #1 Member   Joined: Nov 2010 Posts: 77 Thanks: 0 general term serie hi I'm trying to formulate the general term but I can not, would appreciate help.of the following serie $p(1)\to -\frac{a(2)}{a(1)}$ $p(2)\to \frac{a(2)^2}{a(1)^2}-\frac{a(3)}{a(1)}$ $p(3)\to -\frac{a(2)^3}{a(1)^3}+\frac{2 a(3) a(2)}{a(1)^2}-\frac{a(4)}{a(1)}$ $p(4)\to \frac{a(2)^4}{a(1)^4}-\frac{3 a(3) a(2)^2}{a(1)^3}+\frac{2 a(4) a(2)}{a(1)^2}+\frac{a(3)^2}{a(1)^2}-\frac{a(5)}{a(1)}$ could you find the term $p(n)$ and $p(0)=1$ thanks. investigating it must be someting like this $\sum _{j=1}^n \frac{a(j+2)^j (-1)^{n-j} (n-j) a(2)^{n-2 j}}{a(1)^{n-j}}+\frac{(-1)^n a(2)^n}{a(1)^n}$ but no work yet

 Tags general, serie, term

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post LordofthePenguins Algebra 1 July 3rd, 2013 11:32 AM supernova1203 Real Analysis 2 April 28th, 2011 08:23 AM emohbe Algebra 1 December 14th, 2010 12:16 AM fatoomy Algebra 1 June 30th, 2010 05:10 PM erogol Applied Math 1 April 5th, 2009 01:52 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top