- **Real Analysis**
(*http://mymathforum.com/real-analysis/*)

- - **Equation with factorial**
(*http://mymathforum.com/real-analysis/345959-equation-factorial.html*)

Equation with factorial$\displaystyle a(n!) =[a(n)]! \; \; $ , $\displaystyle n\in \mathbb{N}$ . $\displaystyle a(n)$=? By plugging values: n=1 , a(1)=a(1)! , a(1)=1 . Continuing like this, it gives only the solution $\displaystyle a(n)$ equals constant. The other solution is $\displaystyle a(n)=n$, how to find it? |

Not sure but I arrived to $\displaystyle a((n-1)!)=[a(n)-1]!$ . $\displaystyle [a(n-1)]!=[a(n)-1]! \; \; $ by removing factorials : $\displaystyle a(n-1)=a(n)-1 \; \; $ or $\displaystyle 1+a(n)=a(1+n)\; $ where $\displaystyle a(1)=1$. The equation above is a recurrence relation which has solution $\displaystyle a(n)=n$ . |

All times are GMT -8. The time now is 11:55 AM. |

Copyright © 2019 My Math Forum. All rights reserved.