My Math Forum Inequality with fixed parameter

 Real Analysis Real Analysis Math Forum

 November 4th, 2017, 10:44 AM #1 Senior Member   Joined: Jan 2015 From: usa Posts: 103 Thanks: 1 Inequality with fixed parameter We consider a fixed parameter $a\gg1$ and we note $\cosh(\theta)=\sqrt{4a+1}$ and $\sinh(\theta)=2\sqrt{a}$ for all $t>0$ we note: $$u(t)=\frac{\sinh\Big(\frac{t}{2}\cosh(\theta)\Bi g)}{\cosh(\theta)}$$ $$A(t)=\frac{\sqrt{\cosh^2(\theta)u^2(t)+1}-1}{\cosh^2(\theta)}-\Big(\cosh\Big(\frac{t}{2}\Big)-1\Big)$$ $$f(t)=-\ln\Big(1-\frac{2A(t)}{u(t)+\sinh(t)+A(t)}\Big)$$ I want to show that $$f(t)\ge \frac{\theta^2}{sinh(\theta)}$$ for all $\frac{2\theta}{cosh(\theta)}\le t\le \frac{2\theta^2}{cosh(\theta)}$ Last edited by mona123; November 4th, 2017 at 11:35 AM.

 Tags fixed, inequality, parameter

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post eglaud Calculus 12 February 11th, 2016 07:28 PM ahmed2009 Linear Algebra 2 November 27th, 2015 07:23 AM Zman15 Geometry 2 March 11th, 2015 01:42 PM jiasyuen Calculus 11 February 9th, 2015 06:23 PM helloprajna Number Theory 6 July 9th, 2013 10:46 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top