My Math Forum strange sum

 Real Analysis Real Analysis Math Forum

 September 29th, 2011, 11:12 AM #1 Member   Joined: Nov 2010 Posts: 77 Thanks: 0 strange sum $\sum _{n=1}^{\infty } \frac{(-1)^n \text{Cos}\left[\sqrt{b^2+n^2 \pi ^2}\right]}{n^2 \text{Binomial}[2 n,n]}$ some ideas I could simplify more $\left\{\frac{2\text{ArcCsch}[2]}{\sqrt{5}}-\frac{x^2\text{ArcCsch}[2]}{\sqrt{5}}+\frac{x^4\text{ArcCsch}[2]}{12\sqrt{5}}-\frac{1}{2}\text{HypergeometricPFQ}^{(\{0,0,0\},\{ 0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{4}x^2\text{HypergeometricPFQ}^{(\{0,0,0\ },\{0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{48}x^4\text{HypergeometricPFQ}^{(\{0,0,0\ },\{0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{4}\text{HypergeometricPFQ}^{(\{0,0,0\},\ {0,2\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{8}x^2\text{HypergeometricPFQ}^{(\{0,0,0\} ,\{0,2\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{12}\text{HypergeometricPFQ}^{(\{0,0,0\},\ {0,3\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{24}x^2\text{HypergeometricPFQ}^{(\{0,0,0 \},\{0,3\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{48}\text{HypergeometricPFQ}^{(\{0,0,0\}, \{0,4\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{240}\text{HypergeometricPFQ}^{(\{0,0,0\}, \{0,5\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{2}\text{HypergeometricPFQ}^{(\{0,0,1\},\{ 0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{4}x^2\text{HypergeometricPFQ}^{(\{0,0,1\ },\{0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{48}x^4\text{HypergeometricPFQ}^{(\{0,0,1\ },\{0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{2}\text{HypergeometricPFQ}^{(\{0,0,1\},\ {0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{4}x^2\text{HypergeometricPFQ}^{(\{0,0,1\} ,\{0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{4}\text{HypergeometricPFQ}^{(\{0,0,1\},\{ 0,2\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{8}x^2\text{HypergeometricPFQ}^{(\{0,0,1\ },\{0,2\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{12}\text{HypergeometricPFQ}^{(\{0,0,1\}, \{0,3\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{48}\text{HypergeometricPFQ}^{(\{0,0,1\},\ {0,4\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{4}\text{HypergeometricPFQ}^{(\{0,0,2\},\ {0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{8}x^2\text{HypergeometricPFQ}^{(\{0,0,2\} ,\{0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{4}\text{HypergeometricPFQ}^{(\{0,0,2\},\{ 0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{8}x^2\text{HypergeometricPFQ}^{(\{0,0,2\ },\{0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{8}\text{HypergeometricPFQ}^{(\{0,0,2\},\ {0,2\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{24}\text{HypergeometricPFQ}^{(\{0,0,2\},\ {0,3\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{12}\text{HypergeometricPFQ}^{(\{0,0,3\},\ {0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{24}x^2\text{HypergeometricPFQ}^{(\{0,0,3 \},\{0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{12}\text{HypergeometricPFQ}^{(\{0,0,3\}, \{0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{24}\text{HypergeometricPFQ}^{(\{0,0,3\},\ {0,2\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]+\frac{1}{48}\text{HypergeometricPFQ}^{(\{0,0,4\}, \{0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{48}\text{HypergeometricPFQ}^{(\{0,0,4\},\ {0,1\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]-\frac{1}{240}\text{HypergeometricPFQ}^{(\{0,0,5\}, \{0,0\},0)}\left[\{1,2,1\},\left\{\frac{3}{2},2\right\},-\frac{1}{4}\right]\}\right.$

 Tags strange, sum

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post dendarjake Real Analysis 1 October 19th, 2013 01:32 AM Suliman Calculus 1 September 20th, 2013 11:33 PM phillip1882 Advanced Statistics 1 June 12th, 2013 11:14 AM proglote Algebra 9 August 24th, 2011 03:35 PM bigli Real Analysis 3 May 27th, 2007 03:31 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top