My Math Forum  

Go Back   My Math Forum > College Math Forum > Number Theory

Number Theory Number Theory Math Forum


Reply
 
LinkBack Thread Tools Display Modes
July 30th, 2014, 07:00 AM   #11
Global Moderator
 
CRGreathouse's Avatar
 
Joined: Nov 2006
From: UTC -5

Posts: 16,046
Thanks: 938

Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms
Quote:
Originally Posted by FaustoMorales View Post
Could you help me extend my list of base-2 palindromic primes up to 24 bits or so?
The fake primes? This takes it to 25 bits.

Code:
[4194305, 4210945, 4234369, 4243073, 4251009, 4294849, 4299969, 4306625, 4314561, 4382113, 4398177, 4409697, 4414817, 4421473, 4423905, 4437729, 4461585, 4480273, 4503185, 4511121, 4524113, 4530769, 4547409, 4565713, 4587473, 4604209, 4618033, 4655217, 4671857, 4691185, 4696817, 4734473, 4745993, 4781961, 4792905, 4800841, 4851753, 4854825, 4865577, 4882217, 4898473, 4899241, 4913065, 4931945, 4933993, 4939113, 4950249, 4953321, 4955369, 4978665, 4997401, 5013273, 5048409, 5062233, 5076825, 5081305, 5097945, 5101017, 5119033, 5137209, 5151929, 5160633, 5161401, 5163449, 5166521, 5177465, 5179513, 5191289, 5204857, 5221113, 5227001, 5237753, 5251589, 5253637, 5259525, 5275397, 5282949, 5286533, 5291653, 5310533, 5313605, 5338949, 5340997, 5363141, 5371845, 5395749, 5397797, 5415589, 5439397, 5444709, 5448293, 5455461, 5458277, 5463397, 5472101, 5520917, 5528853, 5577813, 5592405, 5595989, 5614293, 5619413, 5620181, 5634005, 5638197, 5641269, 5649973, 5663541, 5725557, 5753333, 5758453, 5785869, 5790989, 5799693, 5856589, 5858125, 5860173, 5884365, 5923629, 5930797, 5933229, 5958573, 5982573, 5985645, 5987693, 6003949, 6005485, 6012653, 6015469, 6031389, 6045981, 6083997, 6089629, 6108765, 6129885, 6135005, 6138589, 6165565, 6198461, 6236797, 6249853, 6256509, 6266109, 6275581, 6277629, 6310147, 6323971, 6365763, 6367811, 6405827, 6417347, 6424611, 6427683, 6438435, 6457507, 6466211, 6482851, 6490211, 6495331, 6526179, 6569491, 6586131, 6588563, 6605203, 6619219, 6626387, 6633043, 6635859, 6667987, 6684723, 6689843, 6701363, 6715187, 6726323, 6750323, 6755443, 6759027, 6831627, 6839563, 6848651, 6872459, 6932939, 6946763, 6957611, 6970667, 6993579, 7034219, 7039851, 7056107, 7085083, 7108379, 7132571, 7143515, 7160155, 7165275, 7211067, 7219771, 7249083, 7257787, 7263675, 7290491, 7296379, 7309563, 7318267, 7332859, 7347207, 7365383, 7367431, 7370503, 7416391, 7427399, 7433031, 7443655, 7457223, 7465927, 7487015, 7511207, 7529383, 7555431, 7567207, 7574759, 7580391, 7588327, 7597031, 7607319, 7648919, 7667607, 7667799, 7724503, 7726039, 7738423, 7751991, 7774903, 7804023, 7806071, 7812727, 7831415, 7833847, 7840503, 7848439, 7853559, 7862263, 7869455, 7902351, 7929743, 7948623, 7960399, 7984591, 7995439, 8006191, 8009263, 8030383, 8044975, 8088431, 8109807, 8110575, 8133663, 8205919, 8208735, 8224991, 8235743, 8240863, 8273471, 8282943, 8297663, 8325247, 8330367, 8331903, 8350591, 8372735, 8377855]
[16857345, 16893697, 16945793, 17024897, 17056833, 17087041, 17132865, 17138497, 17148737, 17225409, 17264065, 17269697, 17279937, 17287105, 17301537, 17367329, 17388833, 17436833, 17487521, 17502625, 17535905, 17549217, 17559457, 17567841, 17595489, 17680225, 17794017, 17811425, 17869329, 17901841, 17928977, 17939217, 18017937, 18026897, 18037137, 18056081, 18066321, 18098257, 18125393, 18208593, 18229457, 18233553, 18246865, 18250961, 18262737, 18274001, 18312657, 18350033, 18387505, 18393649, 18415921, 18449201, 18463537, 18514609, 18518705, 18532017, 18536113, 18584497, 18645617, 18655857, 18732913, 18780913, 18888713, 18929161, 18950409, 18977545, 19001097, 19027081, 19056265, 19075465, 19118985, 19168329, 19219785, 19223881, 19278025, 19311305, 19361225, 19394505, 19512105, 19515177, 19573417, 19628969, 19646377, 19694185, 19715689, 19726697, 19741033, 19758441, 19796201, 19819753, 19872233, 19875305, 19891177, 19927065, 19933209, 19950617, 19954713, 20039449, 20043545, 20064409, 20163481, 20170649, 20202585, 20222553, 20255065, 20367065, 20479033, 20480569, 20527417, 20540729, 20546361, 20567865, 20661689, 20694969, 20699065, 20709497, 20719737, 20726905, 20822905, 20850937, 20868345, 20878073, 20888313, 21047557, 21088005, 21136005, 21157509, 21172613, 21196165, 21205893, 21219205, 21271109, 21309765, 21331269, 21360453, 21375173, 21402309, 21468101, 21499941, 21517349, 21543461, 21550629, 21579045, 21609253, 21622565, 21664421, 21677733, 21692837, 21703077, 21747621, 21795429, 21823077, 21955045, 21972453, 22085909, 22129429, 22150933, 22254485, 22282133, 22333013, 22362453, 22379861, 22398805, 22474453, 22479317, 22548533, 22581813, 22609461, 22614325, 22631733, 22641973, 22653749, 22660917, 22736565, 22758837, 22769077, 22838389, 22850165, 22882677, 22905717, 22920053, 22985461, 23003637, 23007733, 23047157, 23068661, 23068685, 23134477, 23189261, 23227533, 23237261, 23247501, 23275917, 23297421, 23298957, 23320461, 23378509, 23395917, 23472333, 23476429, 23483597, 23495373, 23499469, 23523021, 23527885, 23561165, 23578573, 23592909, 23626285, 23658029, 23706413, 23800237, 23827373, 23840685, 23898733, 23916141, 23986029, 24003821, 24117229, 24150557, 24210717, 24265885, 24280221, 24291997, 24335773, 24455517, 24565469, 24571613, 24724797, 24804541, 24806077, 24837821, 24842685, 24921213, 24925309, 24951421, 24973693, 25034621, 25078525, 25134077, 25176067, 25183235, 25249027, 25362051, 25396099, 25423747, 25442371, 25478723, 25482819, 25515331, 25537347, 25569475, 25592515, 25602755, 25656771, 25733667, 25766179, 25783587, 25789219, 25816867, 25821347, 25868963, 25876131, 25941923, 26017379, 26022243, 26055523, 26061667, 26068835, 26100963, 26138339, 26163683, 26182627, 26186723, 26231827, 26242067, 26262035, 26280211, 26297619, 26327827, 26411411, 26425747, 26466195, 26514003, 26603347, 26607443, 26611923, 26629331, 26672851, 26687955, 26705363, 26717139, 26804531, 26814771, 26836275, 26901683, 26913459, 26934963, 26986419, 26996659, 27015283, 27028595, 27065971, 27070835, 27081075, 27088243, 27110259, 27136243, 27153651, 27163891, 27241459, 27296267, 27356427, 27376395, 27408523, 27437707, 27497355, 27556939, 27590219, 27618635, 27622731, 27651915, 27677899, 27711179, 27732427, 27769803, 27837995, 27842091, 27900715, 27914027, 27918507, 27946155, 27962027, 27979435, 28059755, 28063851, 28125547, 28129643, 28148587, 28202219, 28307435, 28315675, 28339227, 28420891, 28428059, 28476059, 28480155, 28518811, 28563355, 28607067, 28634715, 28638811, 28653915, 28661083, 28687195, 28709083, 28719323, 28732635, 28808155, 28839995, 28952379, 28977339, 28984507, 29000379, 29010619, 29043131, 29064635, 29093819, 29098107, 29195643, 29246715, 29312507, 29453575, 29457671, 29476615, 29480711, 29501575, 29524615, 29556359, 29584775, 29626439, 29649991, 29659719, 29698375, 29705543, 29725511, 29775047, 29785287, 29823431, 29829575, 29846983, 29884359, 29884455, 29927975, 29977895, 30102951, 30113191, 30114727, 30132135, 30201447, 30281959, 30288103, 30338791, 30371303, 30511895, 30577303, 30649239, 30670935, 30718551, 30754135, 30784343, 30806231, 30835415, 30950455, 30970423, 30980663, 30993975, 31009079, 31016247, 31107767, 31177655, 31205495, 31409655, 31423991, 31439863, 31457295, 31471631, 31544591, 31554831, 31588111, 31643279, 31681935, 31697807, 31736911, 31751247, 31774287, 31806799, 31822671, 31981615, 32018991, 32047407, 32057647, 32226223, 32243823, 32258159, 32385263, 32455151, 32484335, 32491503, 32505839, 32553503, 32589087, 32706975, 32734623, 32772191, 32801375, 32881503, 32884575, 32899295, 32909535, 32936671, 32982495, 32992735, 33015775, 33034303, 33047615, 33113407, 33146687, 33165503, 33178815, 33193151, 33244607, 33353343, 33372543, 33379711, 33433855, 33455359, 33456895, 33471231, 33540095]
CRGreathouse is offline  
 
July 30th, 2014, 07:23 AM   #12
Member
 
Joined: Aug 2011

Posts: 60
Thanks: 0

I'm sorry if I wasn't clear - I meant real primes...

If you could (without too much effort) post the full ordered list of primes that are palindromes when expressed in base 2, say up to 23 or 24 bits, that would really speed up the extension of my exploration of the clustering aspect (I mean questions like: Do the grouping effects keep accentuating as the numbers grow, as it now appears to be the trend?)

Last edited by FaustoMorales; July 30th, 2014 at 07:37 AM.
FaustoMorales is offline  
July 30th, 2014, 08:28 PM   #13
Global Moderator
 
CRGreathouse's Avatar
 
Joined: Nov 2006
From: UTC -5

Posts: 16,046
Thanks: 938

Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms
Quote:
Originally Posted by FaustoMorales View Post
I'm sorry if I wasn't clear - I meant real primes...

If you could (without too much effort) post the full ordered list of primes that are palindromes when expressed in base 2, say up to 23 or 24 bits, that would really speed up the extension of my exploration of the clustering aspect (I mean questions like: Do the grouping effects keep accentuating as the numbers grow, as it now appears to be the trend?)
I don't think there are any grouping trends, beyond what the palindromes have already (and taking into account that the number of bits must be odd unless the number is 3). But you can find a list of the first 3000 (up to about 29 bits) here:
https://oeis.org/A016041
as recently computed by Michael De Vlieger.

If you need more I'm sure I could go further.
CRGreathouse is offline  
July 31st, 2014, 04:08 AM   #14
Member
 
Joined: Aug 2011

Posts: 60
Thanks: 0

Thanks for this helpful information - I will report back with more results in a few days.

Last edited by FaustoMorales; July 31st, 2014 at 04:15 AM.
FaustoMorales is offline  
August 2nd, 2014, 05:46 AM   #15
Member
 
Joined: Aug 2011

Posts: 60
Thanks: 0

As far as clustering, further analysis didn't support my initial impresiĆ³n that it was taking place.

On the patterns, the peculiar distribution in this sequence of the multiples of primes like 3, 5, and perhaps others, appears to introduce very persistent visual patterns, quite unlike the random increasing sequence, although I can't tell yet whether these patterns tend to strengthen or weaken in general. Fascinating stuff to look at, though!
FaustoMorales is offline  
August 2nd, 2014, 08:14 AM   #16
Global Moderator
 
CRGreathouse's Avatar
 
Joined: Nov 2006
From: UTC -5

Posts: 16,046
Thanks: 938

Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms
I've heard that science isn't something you do to prove you're right, it's something you do to become right. I guess math is similar. Kudos!

Maybe we should make some graphs that are either random (with the right distribution) or actual palprimes and see how well the other can visually distinguish them.
CRGreathouse is offline  
August 2nd, 2014, 08:38 AM   #17
Member
 
Joined: Aug 2011

Posts: 60
Thanks: 0

Excellent point and great idea. Thanks for your support.
FaustoMorales is offline  
August 2nd, 2014, 10:17 AM   #18
Global Moderator
 
CRGreathouse's Avatar
 
Joined: Nov 2006
From: UTC -5

Posts: 16,046
Thanks: 938

Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms
Again, if there's something I can do to help, let me know.
CRGreathouse is offline  
Reply

  My Math Forum > College Math Forum > Number Theory

Tags
class, primes, structure



Thread Tools
Display Modes


Similar Threads
Thread Thread Starter Forum Replies Last Post
The set of primes as an algebraic structure eddybob123 Number Theory 54 May 24th, 2014 04:39 PM
How many different structure possible with 4 cube Shen Probability and Statistics 1 May 24th, 2014 12:03 AM
primes and twin primes: Number between powers of 10 caters Number Theory 67 March 19th, 2014 04:32 PM
Proof Structure soulrain Applied Math 4 July 13th, 2012 05:43 PM
Questions regarding structure Wiccidu New Users 4 April 9th, 2011 08:00 PM





Copyright © 2019 My Math Forum. All rights reserved.