My Math Forum Generalization of Riemann-weil formula for arithmetic functions

 Number Theory Number Theory Math Forum

 August 24th, 2019, 12:01 PM #1 Newbie   Joined: Aug 2019 From: spain Posts: 2 Thanks: 1 Generalization of Riemann-weil formula for arithmetic functions $\displaystyle \sum_{n=1}^{\infty} \frac{\mu(n)}{\sqrt{n}}g(\log n)=\sum_{\gamma}\frac{h( \gamma)}{\zeta '( \rho )}+\sum_{n=1}^{\infty} \frac{1}{\zeta ' (-2n)} \int_{-\infty}^{\infty}dxg(x)e^{-(2n+1/2)x} [/itex]$ $\displaystyle \sum_{n=1}^{\infty} \frac{\lambda(n)}{\sqrt{n}}g(\log n) = \sum_{\gamma}\frac{h( \gamma)\zeta(2 \rho )}{\zeta '( \rho)}+ \frac{1}{\zeta (1/2)}\int_{-\infty}^{\infty}dx g(x)$ $\displaystyle \sum_{n=1}^{\infty} \frac{\varphi (n)}{\sqrt{n}}g(\log n)= \frac{6}{\pi ^2} \int_{-\infty}^{\infty}dx g(x)e^{3x/2}+ \sum_{\gamma}\frac{h( \gamma)\zeta(\rho -1 )}{\zeta '( \rho)}+ \frac{1}{2}\sum_{n=1}^{\infty} \frac{\zeta (-2n-1)}{\zeta ' (-2n)} \int_{-\infty}^{\infty}dx g(x)e^{-x(2n+1/2)}$ think this could be interesting is based on a idea by myself could someone help me to get a Ph D thesis based on this ?

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post raul21 Number Theory 6 May 24th, 2014 09:50 AM raul21 Number Theory 2 May 23rd, 2014 10:04 AM mhss12345 Number Theory 1 November 2nd, 2012 11:59 AM miller Abstract Algebra 0 August 20th, 2010 12:11 AM Jalaska13 Number Theory 0 May 30th, 2010 03:30 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top