![]() |
if a function is one-to-one and onto then it is invertible. Hi, For each ordered pair (a,b) of real numbers with $a \ne 0$, let $\alpha_{a,b} : \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\alpha_{a,b}(x) = ax+b$. Let $A$ denote the set of all such mappings. Then composition is an operation on A, $\alpha_{a,b} \circ \alpha_{c,d} = \alpha_{ac, ad+b}$. Consider the operation $\circ$ on the set A of the above exercise Prove that each $\alpha_{a,b} \in A$ is invertible by verifying that it is one-to-one and onto. (with $a \ne 0$). So, this is my attempt: Assuming $\alpha_{a,b}$ both one-to-one and onto, we'll go to show that $\alpha_{a,b}$ is invertible describing an inverse. Assuming $y = ax+b \in \mathbb{R}$ in the codomain, since it is onto, there is at least an element $x \in \mathbb{R}$ in the domain such that $\alpha_{a,b}(x) = y$ But, since $\alpha_{a,b}$ one-to-one, then that element must be unique. We consider another function $\beta(y) = x$, this can be done for each element $y \in \mathbb{R}$ in the codomain, therefore we obtain a function $\beta : \mathbb{R} \rightarrow \mathbb{R}$ inverse of $\alpha_{a,b}$. Can you help me please? What do you think about it? Many thanks! |
Apply the definition of bijection. Than try to figure out if it's possible to do the same with $Y^2=R^2-X^2$ |
Quote:
Quote:
|
Quote:
To verify that the function is injective I have also tried this: $\alpha_{a,b} = ax+b \mbox{ is injective if } \\ x_1 \ne x_2 \Rightarrow \alpha_{a,b}(x_1) \ne \alpha_{a,b}(x_2), (x_1, x_2 \in \mathbb{R}) \\ ax_1 + b \ne ax_2 + b \\ ax_1 - ax_2 \ne 0 \\ x_1 - x_2 \ne 0 \, (\forall a \ne 0) \\ x_1 \ne x_2$ |
All times are GMT -8. The time now is 03:32 AM. |
Copyright © 2018 My Math Forum. All rights reserved.