
New Users Post up here and introduce yourself! 
 LinkBack  Thread Tools  Display Modes 
January 18th, 2017, 07:20 AM  #1 
Newbie Joined: Jan 2017 From: Germany Posts: 1 Thanks: 0  4th root of 1 and 5th root of 1
can you help me please to solve 4th root of 1?

January 18th, 2017, 07:30 AM  #2 
Senior Member Joined: Sep 2015 From: USA Posts: 1,693 Thanks: 860  
January 18th, 2017, 09:10 AM  #3 
Senior Member Joined: May 2016 From: USA Posts: 881 Thanks: 353 
Umm $(1 + i)^4 = \{(1 + i)^2\}^2 = (1^2 + 2i + i^2)^2 = (\cancel 1 + 2i  \cancel 1)^2 = (2i)^2 =  4.$ What I believe romsek meant was: $\sqrt[4]{\ 1} = \dfrac{\sqrt{2}}{2} * (1 + i)\ and\ so\ on\ for\ the\ other\ three\ roots.$ $\left \{ \dfrac{\sqrt{2}}{2} * (1 + i) \right \}^4 = \left ( \dfrac{2}{4} * 2i \right )^2 = \left( \dfrac{\cancel 4 i}{\cancel 4} \right )^2 = i^2 = \ 1.$ 
January 18th, 2017, 03:45 PM  #4 
Senior Member Joined: Aug 2012 Posts: 1,679 Thanks: 436 
OP, the key to these problems is to know that when you multiply complex numbers, you multiply their lengths and add their angles. Since in this case $1$ has length $1$, we are just looking for some number whose angle added together four times has the same angle as $1$, which has angle $\pi$ radians. I'm skipping a discussion of the polar form of complex numbers, but that's the essential thing to know. You can read about it here. https://en.wikipedia.org/wiki/Complex_number#Polar_form So, what angle times $4$ is $\pi$? It's $\frac{\pi}{4}$ obviously, so $e^{i \frac{\pi}{4}}$ is one of the fourth roots. The others are the integer powers of that. If you are not familiar with this geometric interpretation of complex multiplication, it's very helpful to know. Then when you see a problem like this you just go, "Well, $1$ makes an angle of $\pi$ with the positive xaxis, and one fourth of that is $\frac{\pi}{4}$ so the principle fourth root is $e^{i \frac{\pi}{4}}$. And the other fourth roots are the integer powers of that." You just see it right away, you don't even need to think about it. 
January 18th, 2017, 06:32 PM  #5 
Member Joined: Oct 2016 From: Melbourne Posts: 77 Thanks: 35 
In its most general form, we can write $\displaystyle \begin{align*} 1 = \mathrm{e}^{\left( 2\,n + 1 \right) \,\pi\,\mathrm{i}} \end{align*}$, where $\displaystyle \begin{align*} n \in \mathbf{Z} \end{align*}$  in other words, all the complex numbers of magnitude 1 which have an argument that is an odd multiple of $\displaystyle \begin{align*} \pi \end{align*}$, thus $\displaystyle \begin{align*} \sqrt[4]{1} &= \left( 1 \right) ^{\frac{1}{4}} \\ &= \left[ \mathrm{e}^{\left( 2\,n + 1 \right) \,\pi\,\mathrm{i}} \right] ^{\frac{1}{4}} \\ &= \mathrm{e}^{ \frac{\left( 2\,n + 1 \right) \,\pi}{4}\,\mathrm{i} } \end{align*}$ in other words, all the complex numbers that have a magnitude of 1 and an argument that is an odd multiple of $\displaystyle \begin{align*} \frac{\pi}{4} \end{align*}$. Thus the four principal solutions are $\displaystyle \begin{align*} \mathrm{e}^{\frac{3\,\pi}{4}\,\mathrm{i}} &= \cos{ \left( \frac{3\,\pi}{4} \right) } + \mathrm{i}\,\sin{ \left( \frac{3\,\pi}{4} \right) } \\ &= \frac{\sqrt{2}}{2}  \frac{\sqrt{2}}{2}\,\mathrm{i} \\ \\ \mathrm{e}^{\frac{\pi}{4}\,\mathrm{i}} &= \cos{ \left( \frac{\pi}{4} \right) } + \mathrm{i}\,\sin{ \left( \frac{\pi}{4} \right) } \\ &= \frac{\sqrt{2}}{2}  \frac{\sqrt{2}}{2}\,\mathrm{i} \\ \\ \mathrm{e}^{\frac{\pi}{4}\,\mathrm{i}} &= \cos{ \left( \frac{\pi}{4} \right) } + \mathrm{i}\,\sin{ \left( \frac{\pi}{4} \right) } \\ &= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\,\mathrm{i} \\ \\ \mathrm{e}^{\frac{3\,\pi}{4}\,\mathrm{i}} &= \cos{ \left( \frac{3\,\pi}{4} \right) } + \mathrm{i}\,\sin{ \left( \frac{3\,\pi}{4} \right) } \\ &= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\,\mathrm{i} \end{align*}$ As for the fifth roots, we do the same thing again... $\displaystyle \begin{align*} \sqrt[5]{1} &= \left( 1 \right) ^{\frac{1}{5}} \\ &= \left[ \mathrm{e}^{\left( 2\,n + 1 \right) \,\pi } \right] ^{\frac{1}{5}} \\ &= \mathrm{e}^{ \frac{\left( 2\,n + 1 \right) \,\pi}{5}\,\mathrm{i} } \end{align*}$ in other words, all the numbers which have a magnitude of 1 and an argument that is an odd multiple of $\displaystyle \begin{align*} \frac{\pi}{5} \end{align*}$. It is handy to know that $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{5} \right) } = \frac{1 + \sqrt{5}}{4} \end{align*}$ and $\displaystyle \begin{align*} \sin{ \left( \frac{\pi}{5} \right) } = \frac{\sqrt{ 10  2\,\sqrt{5} }}{4} \end{align*}$ Do you think you can find the five principal solutions? Last edited by Prove It; January 18th, 2017 at 06:46 PM. 

Tags 
4th, 5th, root 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
integrate root(1x^2)/root(1+x^2) x dx  mared  Calculus  3  May 18th, 2014 05:39 PM 
root  mared  Algebra  1  February 28th, 2014 08:24 PM 
root  mared  Algebra  1  January 30th, 2014 09:28 AM 
Root within a root.  Akimb  Elementary Math  3  September 14th, 2012 08:49 AM 
Infinite Root in Root  adhiluhur  Algebra  1  June 13th, 2010 05:30 AM 