User Name Remember Me? Password

 Math General Math Forum - For general math related discussion and news

 March 21st, 2015, 07:58 AM #21 Senior Member   Joined: Mar 2015 From: England Posts: 201 Thanks: 5 10 Infinitithes = 1 smallest finite number Zero is known as a number because it is shown on the number line. Zero is at the start, Infinity would be at the end. Last edited by HawkI; March 21st, 2015 at 08:01 AM. Reason: Musing March 21st, 2015, 08:10 AM #22 Math Team   Joined: Dec 2013 From: Colombia Posts: 7,674 Thanks: 2654 Math Focus: Mainly analysis and algebra There is no smallest number, just as there is no largest number. In fact, there is no smallest number because there is no largest number. I've already shown you that the natural definition of an infinitieth yields a value of zero. March 22nd, 2015, 05:59 PM   #23
Math Team

Joined: Jan 2015
From: Alabama

Posts: 3,264
Thanks: 902

Quote:
 Originally Posted by HawkI These words are as far as I'm aware my own invention. Perhaps this will help. 10 Infinitiths = 1 Atto
Since "Atto" itself is defined only as a prefix, meaning "$\displaystyle 10^{-18}$" so is not itself a 'thing'. But if you mean that one "infinitith" is $\displaystyle 10^{-19}$, that is not at all what you were saying before!

Last edited by skipjack; March 22nd, 2015 at 07:05 PM. March 22nd, 2015, 07:04 PM   #24
Global Moderator

Joined: Dec 2006

Posts: 20,927
Thanks: 2205

Quote:
 Originally Posted by HawkI Let's forget about the e on the end.
Why? Did you originally intend "infinitieth or "infinitithe" or "infinitith"? Can you adopt one of those spellings and use it throughout as though the other spellings were never used (or just typos)? March 23rd, 2015, 03:34 AM #25 Senior Member   Joined: Apr 2014 From: Glasgow Posts: 2,157 Thanks: 732 Math Focus: Physics, mathematical modelling, numerical and computational solutions The closest equivalent I can think of is "infinitesimal" which is used in calculus and perturbation theory as a place marker to study tiny changes in something. It has the prefix $\displaystyle \delta$ or $\displaystyle d$. For example, if $\displaystyle x$ is a Cartesian spatial coordinate, $\displaystyle \delta x$ refers to a very tiny (but finite) change in length and $\displaystyle dx$ refers to an infinitesimally small change in length. There are special rules about you deal with these in a consistent manner in calculus though; treating them as standard "numbers" will typically get you into trouble. If this is not what you mean, then you should probably reread V8Archies post about limits. March 23rd, 2015, 05:12 AM #26 Senior Member   Joined: Mar 2015 From: England Posts: 201 Thanks: 5 I think I read some where Infinity - 1 = Finite I only mentioned atto because that was the smallest number I could think of, I'm going to choose the third spelling. cm = centre metre im = infinitith metre 1cm = 1cm 1im = 1im 10im = finite Last edited by HawkI; March 23rd, 2015 at 05:13 AM. Reason: Addendum March 23rd, 2015, 05:45 AM #27 Math Team   Joined: Dec 2013 From: Colombia Posts: 7,674 Thanks: 2654 Math Focus: Mainly analysis and algebra You are talking rubbish. The thing you have named does not exist - or if it does, it is already called zero. Thanks from jiasyuen March 23rd, 2015, 06:10 AM   #28
Senior Member

Joined: Apr 2014
From: Glasgow

Posts: 2,157
Thanks: 732

Math Focus: Physics, mathematical modelling, numerical and computational solutions
Quote:
 Originally Posted by HawkI I think I read some where Infinity - 1 = Finite I only mentioned atto because that was the smallest number I could think of, I'm going to choose the third spelling. cm = centre metre im = infinitith metre 1cm = 1cm 1im = 1im 10im = finite
If you got this from a book, I suggest you replace it with a better one!

Here's a list of prefixes for very small numbers used in maths and sciences, using metres as an example unit:

1 metre = 1m = 1m
1 millimetre = 1 mm = $\displaystyle 10^{-3}$ m
1 micrometre = 1 $\displaystyle \mu$ m = $\displaystyle 10^{-6}$ m
1 nanometre = 1 nm = $\displaystyle 10^{-9}$ m
1 picometre = 1 pm = $\displaystyle 10^{-12}$ m
1 femtometre = 1 fm = $\displaystyle 10^{-15}$ m
1 attometre = 1 am = $\displaystyle 10^{-18}$ m
1 zeptometre = 1 zm = $\displaystyle 10^{-21}$ m
1 yoctometre = 1 ym = $\displaystyle 10^{-24}$ m

Another very small length is

1 plank length = $\displaystyle \ell_P$ = $\displaystyle 1.6162 \times 10^{-35}$ m

... no "infinitieth" here. All of these numbers are finite, no matter how small. Even $\displaystyle 10^{-100000000}$ would be finite. Even 1 divided by Graham's number would be finite! March 23rd, 2015, 06:18 AM #29 Global Moderator   Joined: Nov 2006 From: UTC -5 Posts: 16,046 Thanks: 938 Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms You're thinking that there is some threshold number $0<\varepsilon\in\mathbb{R}$ such that anything $01/\varepsilon$ is 'infinite'. Sure, you could do that, but I don't see any advantage to doing so -- and clearly this contradicts mathematical usage of those terms. Thanks from Benit13 March 23rd, 2015, 09:17 AM   #30
Math Team

Joined: Dec 2013
From: Colombia

Posts: 7,674
Thanks: 2654

Math Focus: Mainly analysis and algebra
Quote:
 Originally Posted by HawkI Infinity - 1 = Finite
This is just plain wrong. What ever finite quantity you subtract from an infinite one, you are left with an infinite quantity.

This glosses over whether the term 'an infinite quantity' means anything. Probably we should talk about taking a finite number of elements from an infinite set. Although some people would deny the existence of infinite sets too. Tags infinitithes Search tags for this page

### Infinitithes

Click on a term to search for related topics.
 Thread Tools Show Printable Version Email this Page Display Modes Linear Mode Switch to Hybrid Mode Switch to Threaded Mode

 Contact - Home - Forums - Cryptocurrency Forum - Top

Copyright © 2019 My Math Forum. All rights reserved.      