My Math Forum > Math a Zn suite that begins with an anomaly and can not be made with the classical math

 Math General Math Forum - For general math related discussion and news

 June 10th, 2019, 12:55 AM #1 Newbie   Joined: Jun 2019 From: Casablanca https://extrazlove.blogspot.com/ extrazlove https://extrazlove.blogspot.com Posts: 11 Thanks: 0 a Zn suite that begins with an anomaly and can not be made with the classical math Hello log (2 ^ t + t ^ 2-64) = t (1-log (5)) I put i = t with i ^ 2 = -1 So log (2 ^ i + i ^ 2-64) = i (1-log (5)) so log (2 ^ i-65) = i (1-log (5)) ln (2 ^ i-65) + i * ln (5) -i = ln (2 ^ i-65) + ln (5-i) = -i 0 ln (((2 ^ i-65) * 5 ^ i) = i therefore (2 ^ i-65) * 5 ^ i = exp (i) = -10-325 * i = - (10 + 325 * i) therefore exp (i) * exp (pi) = - (10 + 325 * i) * exp (pi) = exp (i * pi) And since the t does not like to be a complex i it wants to be a Z so it will go back to the equation in Z form and by R because exp (i * pi) = exp (i * pi * t) or t belongs to Z not a R So exp (i * pi * t) = - (10 + 325 * i) * exp (pi) so exp (i * t) = - (10 + 325 * i) So i * t = log (-10 + 325 * i) So t = log (-10 + 325 * i) / i = -i * log (-10 + 325 * i) = log- (10 + 325 * i) ^ i = So I have my t = i * log- (10 + 325 * i) And since the axiom Z says that an imaginary number can reduce its complexity if by transforming it into a counter 0 1 2 3 .... So Here are the solutions for i = 0 t = log (-10) ^ 0 for i = 1 t = log- (10 + 325 * 1) ^ 1 i = 2 t = log- (10 + 325 * 2) ^ 2 ... i = n t = log- (10 + 325 * n) ^ n so this is my V (t) possible solution the solutions are t = log- (10 + 325 * n) ^ n = -n * log- (10 + 325 * n) = verification: ** ln (2 ^ t + t ^ 2-64) = t (1-ln (5))? ** log (2 ^ log (n) + log (n) * log (n) -64) = log (n) (1-ln (5)) so log (-n + log (-n) * log (-n)) = log (-n) (1-log (5)) because 2 ^ log (-n) = - n log (-n + log (-n) * log (-n)) = log (-n) -log-n * log (5) = log (-n) -log-n Vn Zn = (- exp (Vn) / (3 * 10 * 10 ^ n) * (n ^ n)) *************************** i = 0 t = log (-10) 0/0 for i = 1 t = log- (10 + 325 * 1) ^ 1 (10 + 325 * 1) ^ 1 / (3 * 10 * 10 ^ 1 * 1 ^ 1) = 1.1166666666666667 = ( i = 2 t = log- (10 + 325 * 2) ^ 2 (10 + 325 * 2) ^ 2 / (3 * 10 * 10 ^ 2 * 2 ^ 2) = 36.3 ************************************************** ***************(10 + 325 * 3) ^ 3 / (3 * 10 * 10 ^ 3 * 3 ^ 3) = 1179.8415123456790123 ************************************************** ***************(10 + 325 * 4) ^ 4 / (3 * 10 * 10 ^ 4 * 4 ^ 4) = 38346.3438802083333333 ************************************************** ***************(10 + 325 * 5) ^ 5 / (3 * 10 * 10 ^ 5 * 5 ^ 5) = 1246285.403469 ************************************************** **************(10 + 325 * 6) ^ 6 / (3 * 10 * 10 ^ 6 * 6 ^ 6) = 40504909.9617741197988112 ************************************************** ********* ************************************************** **************... i = n t = log- (10 + 325 * n) n and the use of this sequence changes the infinitsimal calculus after a certain time the Z1 = 1.1133333333333333 and before was 1.1166666666666667 probably because of the anomaly 0/0 that there change ca? Zn represents a bijection towards Z without turning to the left nor to the right and a simple forge Zn = (- exp (Vn) / (3 * 10 * 10 ^ n) * (n ^ n)) So my Zn is math or not because with the math of axiom ZF can not find it Zn=(10 + 325 * n) ^ n / (3 * 10 * 10 ^ n * n ^ n) starts 0/0 and can not build with classical math if not find Z10 here or Z19 without this formula with math even if I give you a lot of numbers Last edited by Zouha10; June 10th, 2019 at 01:24 AM.
 June 10th, 2019, 01:50 AM #2 Newbie   Joined: Jun 2019 From: Casablanca https://extrazlove.blogspot.com/ extrazlove https://extrazlove.blogspot.com Posts: 11 Thanks: 0 Zn=(10 + 325 * n) ^ n / (3 * 10 * 10 ^ n * n^ n) et vous avez pas réussi a trouver Z car z0=log(-10)=anomalie et cette suite en peux pas le calculer avec du math classique et a chaque fois que vous calculer ses valeur apres un certain temps vous refaite le callcul vous trouver autre et le cause l'anomalie de depart ln-10. Last edited by skipjack; June 10th, 2019 at 04:31 AM.
 June 10th, 2019, 04:34 AM #3 Global Moderator   Joined: Dec 2006 Posts: 20,746 Thanks: 2133 Let's give this subject a rest. Thanks from topsquark and Greens

 Tags anomaly, begins, classical, made, math, suite

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post Zou37 Elementary Math 11 February 20th, 2019 01:59 PM SenatorArmstrong Physics 7 August 20th, 2018 10:44 AM zylo Real Analysis 76 July 9th, 2018 05:30 PM InkSprite New Users 1 December 30th, 2016 02:41 PM STV New Users 25 June 20th, 2014 02:12 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top