My Math Forum  

Go Back   My Math Forum > Math Forums > Math

Math General Math Forum - For general math related discussion and news


Thanks Tree37Thanks
Reply
 
LinkBack Thread Tools Display Modes
January 16th, 2019, 12:10 PM   #11
Senior Member
 
Joined: Jun 2014
From: USA

Posts: 479
Thanks: 36

Quote:
Originally Posted by zylo View Post
Maschke. Please give "Counter example" {whatever that means}

JeffM1. Please give your definition of a real number and a representative member, other than "x" or "a."

EDIT

I wavered between "represented by" and "defined by". But what is it you are representing? A Dedekind cut? How do you define a Dedekind cut without numbers, and then what decimal do you assign to it?
Quote:
Originally Posted by JeffM1 View Post
A representative real number is 1. According to you it has a unique decimal representation. Prove it.

You are the one trying to demonstrate something. I am under no obligation to do anything. I accept that you may define things as you please, but then what you have to say has no relevance to anyone else.
In decimal, we can express the number one as:

$$1$$
or as
$$0.\overline{9}$$

Therefore, one is a counterexample because it has two decimal representations. Any number of the form $\frac{n}{10^m}$, where $n$ is an integer and $m$ is a natural number, will have two decimal expansions (except $0$, which only has one). The rest of the reals will have only one decimal expansion.

Last edited by skipjack; January 16th, 2019 at 02:59 PM.
AplanisTophet is online now  
 
January 16th, 2019, 12:40 PM   #12
Senior Member
 
Joined: Oct 2009

Posts: 733
Thanks: 247

Quote:
Originally Posted by zylo View Post
1 is a real number by definition: it is a unique decimal sequence.

"No relevance to anyone else?" You mean to you, don't you
I completely agree that $1$ has a decimal expansion.
You should prove however that $1$ cannot have more than $1$ expansion. How do you know there isn't some weirdo expansion that happens to equal $1$?

Or do you DEFINE real numbers as such, by their decimal expansions?
Thanks from topsquark
Micrm@ss is offline  
January 16th, 2019, 12:42 PM   #13
Senior Member
 
Joined: Dec 2015
From: iPhone

Posts: 387
Thanks: 61

$\displaystyle 0. \overline{9}$ converges to $\displaystyle 1$ and not equal to $\displaystyle 1$
idontknow is offline  
January 16th, 2019, 12:50 PM   #14
Senior Member
 
Joined: Oct 2009

Posts: 733
Thanks: 247

Quote:
Originally Posted by idontknow View Post
$\displaystyle 0. \overline{9}$ converges to $\displaystyle 1$ and not equal to $\displaystyle 1$
That's like saying the number 2 converges to 1. Does it? What does it mean for a number to converge? Can you prove the number 2 doesn't converge to the number 1?
Thanks from topsquark
Micrm@ss is offline  
January 16th, 2019, 01:08 PM   #15
Banned Camp
 
Joined: Mar 2015
From: New Jersey

Posts: 1,720
Thanks: 124

You are talking about applications of the decimal definition.
1 has no expansion. A decimal number can have an unlimited number of digits, but doesn't have to. 33 and 333333.... are both valid (different) decimal numbers.

Defining the natural numbers by decimal digits is trivial: 1, 2, 3, ...
Application of a decimal point to all the natural numbers gives (defines) all the real numbers in [0,1). But that's been gone over many times in previous posts.

.9 and 1 are not the same thing. But considering them the same is part of the practical application of the decimal definition of the real numbers.

EDIT
One way to define all the real numbers in [0,1) is to list the natural numbers, put a period after them, and read them in reverse.
1. Is .1
2. Is .2
.
10. Is .01
.

Last edited by zylo; January 16th, 2019 at 01:20 PM.
zylo is offline  
January 16th, 2019, 01:18 PM   #16
Senior Member
 
Joined: Aug 2012

Posts: 2,157
Thanks: 631

Quote:
Originally Posted by zylo View Post
1 is a real number by definition: it is a unique decimal sequence.
Really? You can't think of another, entirely different decimal that evaluates to 1?
Maschke is offline  
January 16th, 2019, 05:56 PM   #17
Math Team
 
topsquark's Avatar
 
Joined: May 2013
From: The Astral plane

Posts: 2,042
Thanks: 815

Math Focus: Wibbly wobbly timey-wimey stuff.
Same old arguments as many times before...

-Dan
topsquark is offline  
January 16th, 2019, 06:08 PM   #18
Math Team
 
Joined: Dec 2013
From: Colombia

Posts: 7,600
Thanks: 2588

Math Focus: Mainly analysis and algebra
Quote:
Originally Posted by zylo View Post
Convergence in the conventional sense has nothing to do with this.
Nope. Convergence has everything to do with the value of a decimal representation.
Thanks from Maschke and topsquark
v8archie is offline  
January 17th, 2019, 04:56 AM   #19
Senior Member
 
Joined: Dec 2015
From: iPhone

Posts: 387
Thanks: 61

For each statement , a proof is needed.
Show a proof that $\displaystyle 0. \overline{9} =1$ .(or disprove it)
idontknow is offline  
January 17th, 2019, 06:17 AM   #20
Senior Member
 
Joined: Jun 2014
From: USA

Posts: 479
Thanks: 36

Quote:
Originally Posted by idontknow View Post
For each statement , a proof is needed.
Show a proof that $\displaystyle 0. \overline{9} =1$ .(or disprove it)
Any one of these work for you?

https://math.stackexchange.com/quest...edirect=1&lq=1

I say if $0.\overline{9} < 1$, then there must be a real number $x$ such that:
$$0.\overline{9} < x < 1$$
In that case, what is the decimal representation of $x$? The OP says it must be unique.
Thanks from topsquark, idontknow and JeffM1
AplanisTophet is online now  
Reply

  My Math Forum > Math Forums > Math

Tags
decimals, numbers, real



Thread Tools
Display Modes


Similar Threads
Thread Thread Starter Forum Replies Last Post
Real Numbers and Natural Numbers zylo Topology 14 May 10th, 2017 02:57 AM
Dimensions, and numbers beyond real numbers Elektron Math 4 May 7th, 2017 12:47 PM
Real numbers Congeniality Math Books 2 June 10th, 2015 09:25 AM
Irrational Numbers. Repeating Decimals and Infinity? MattJ81 New Users 11 July 10th, 2010 08:51 PM
Real Numbers Tartarus Algebra 2 November 26th, 2009 02:28 PM





Copyright © 2019 My Math Forum. All rights reserved.