
Math Software Math Software  Mathematica, Matlab, Calculators, Graphing Software 
 LinkBack  Thread Tools  Display Modes 
February 26th, 2012, 12:21 AM  #1 
Newbie Joined: Nov 2011 Posts: 10 Thanks: 0  MATLAB problem with Kapitsa pendulum
2. Relevant equations Theory for Kapitsa pendulum predicts that the motion consists of 2 parts: x(t)=X(t)+ x˜(t) (1) With fast oscillations: x˜(t)=?AX(t)sin(wt) /(w^2) (2) and a slowly varying motion X(t) which satisfies the following equation, X''=(1?(A^2)/(2w^2))X (3) 1. The problem statement, all variables and given/known data 1. Find the analytical solution of the equation (3) and derive the criterion of stability of the point X = 0 in terms of the parameters A and w.For the stable case, nd the period of oscillations of X(t) in terms of A and w, and the shape of the trajectory in the phase plane. For the unstable case, nd the growth rate of deviation from the equilibrium point and nd the trajectory in the (X; X') phase plane. 2. Rewrite the equation x''=x(1+Asin(wt)) as a system of two rst order ODE's so that the Matlab programme ode45 could be used. Create a function le for the righthandside of this system to be used by ode45 to solve it. 3.Consider the stable trajectories, with emphasis on the values of w close to the critical value wcrit. Find approximate periods for X(t). For this, you will need to run solutions for different time intervals and find for the interval which leads to the first approximate return of the trajectory to the initial phasespace point (not necessarily an exact return, because recurrence in X does not imply exact recurrence in x). Do these periods agree with the analytical formula you obtained above (in part 1)? What happens to the period when w tends to its critical value? 3. The attempt at a solution Please help me with the solution, i'm really bad with computer so i don't have any idea at all. Thank you very much. 
February 26th, 2012, 01:35 AM  #2 
Newbie Joined: Nov 2011 Posts: 10 Thanks: 0  Re: MATLAB problem with Kapitsa pendulum
3. The attempt at a solution Ok,this is what i currently have: After solving the first question, i know that: x(t)=x(0)cos(sqrt(A^2/(2w^2)1)*t) I know that if A^2/(2w^2)1 is less than 0, then it is unstable, otherwise it is stable The period seems to be 2*pi/sqrt(A^2/(2w^2)1) But i don't know how to find the shape of the trajectory in the phase plane, from what i know, i have to insert the formula into Matlab to obtain the graph . For the unstable case, find the growth rate of deviation(i don't know what the growth rate of deviation is and how to find it) from the equilibrium point and find the trajectory in the (X; X') phase plane.( please help me with this too) 2. Rewrite the equation x''=x(1+Asin(wt)) as a system of two rst order ODE's so that the Matlab programme ode45 could be used. For this, i can split it into two part: x'=y y'=x(1+Asin(wt)) But i don't know how to create a function file for the righthandside of this system to be used by ode45 to solve it. 

Tags 
kapitsa, matlab, pendulum, problem 
Search tags for this page 
Click on a term to search for related topics.

Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Problem with a matlab code  dkandel  Math Software  0  January 9th, 2014 09:52 PM 
Numerical Methods problem in Matlab!  kashan  Applied Math  0  November 23rd, 2013 10:10 AM 
A pendulum experiment  Chikis  Physics  6  February 19th, 2013 01:12 PM 
A pendulum+weight problem!  Moth  Physics  0  October 16th, 2011 07:14 AM 
String pendulum  jk22  Physics  0  July 7th, 2010 02:26 PM 