My Math Forum

My Math Forum (http://mymathforum.com/math-forums.php)
-   Math Software (http://mymathforum.com/math-software/)
-   -   Lyapunov in duffing and van der pol (http://mymathforum.com/math-software/23712-lyapunov-duffing-van-der-pol.html)

dantekavala January 12th, 2012 03:27 AM

Lyapunov in duffing and van der pol
 
I have to make a program to calculate the largest lyapunov exponent for lorenz, rossler, duffing and van der pol. I did for the first two but i can't do it for the rest of them

The code i use for lorenz is this one:
Code:

F[{x_, y_, z_}] := {? (y - x), x (r - z) - y, x y - b z};
JacobianMatrix[funs_List, vars_List] := Outer[D, funs, vars]; J =
 JacobianMatrix[
  F[{Subscript[y, 1][t], Subscript[y, 2][t],
    Subscript[y, 3][t]}], {Subscript[y, 1][t], Subscript[y, 2][t],
  Subscript[y, 3][t]}]; Y =
 Table[{Subscript[y, i][t], Subscript[y, i + 3][t],
  Subscript[y, i + 6][t]}, {i, 4, 6}]; E1 =
 Flatten[Transpose[J.Y]]; EQ3 =
 Table[D[Subscript[y, i][t], {t, 1}] ==
  F[{Subscript[y, 1][t], Subscript[y, 2][t], Subscript[y, 3][t]}][[
    i]], {i, 1, 3}]; EQ9 =
 Table[D[Subscript[y, i][t], {t, 1}] == E1[[i - 3]], {i, 4,
  12}]; YI9 =
 Table[{Subscript[y, i][0] == If[Mod[i, 4] == 0, 1, 0],
  Subscript[y, i + 3][0] == If[Mod[i + 3, 4] == 0, 1, 0],
  Subscript[y, i + 6][0] == If[Mod[i + 6, 4] == 0, 1, 0]}, {i, 4, 6}];
YI3 = {Subscript[y, 1][0] == 19, Subscript[y, 2][0] == 20,
  Subscript[y, 3][0] == 50}; sol1 =
 NDSolve[Join[EQ9, EQ3, YI3, YI9],
  Table[Subscript[y, i][t], {i, 1, 12}], {t, 0, 30},
  MaxSteps -> Infinity];
u = Table[Random[], {3}];
T = 30;
PhiT = Transpose[
  Table[{Subscript[y, i][t], Subscript[y, i + 3][t],
      Subscript[y, i + 6][t]}, {i, 4, 6}] /. sol1 /. t -> 30];
mle = Log[Norm[PhiT.u]]/T;

Lorenz and rossler have 3 equation so i don't have problem. Duffing and van der pol have only one equation and i don't know what to do. I try a lot of things with this code but anyone has results


All times are GMT -8. The time now is 05:40 AM.

Copyright © 2018 My Math Forum. All rights reserved.