My Math Forum The 8th Korean Mathematical Olympiad

 Math Events Math Events, Competitions, Meetups - Local, Regional, State, National, International

 July 21st, 2009, 02:37 AM #1 Senior Member   Joined: Apr 2007 Posts: 2,140 Thanks: 0 The 8th Korean Mathematical Olympiad Since I'm Korean, I will post this interesting problem by KMO. 2. For a given positive integer $m$, find all pairs $(n, x, y)$ of positive integers such that $m$, $n$ are relatively prime and $(x^2+y^2)^m= (xy)^n$, where $n$, $x$, $y$ can be represented by functions of $m$.
 July 22nd, 2009, 04:08 PM #2 Senior Member   Joined: Apr 2007 Posts: 2,140 Thanks: 0 Re: The 8th Korean Mathematical Olympiad Hint: this could require basic number theory knowledge.
July 22nd, 2009, 09:07 PM   #3
Global Moderator

Joined: Nov 2006
From: UTC -5

Posts: 16,046
Thanks: 937

Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms
Re: The 8th Korean Mathematical Olympiad

Quote:
 Originally Posted by johnny where $n$, $x$, $y$ can be represented by functions of $m$.
What does this mean?

July 22nd, 2009, 09:47 PM   #4
Senior Member

Joined: Apr 2007

Posts: 2,140
Thanks: 0

Re: The 8th Korean Mathematical Olympiad

Quote:
Originally Posted by CRGreathouse
Quote:
 Originally Posted by johnny where $n$, $x$, $y$ can be represented by functions of $m$.
What does this mean?
For example, m(x) = n+x+y?

July 23rd, 2009, 08:18 AM   #5
Global Moderator

Joined: Nov 2006
From: UTC -5

Posts: 16,046
Thanks: 937

Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms
Re: The 8th Korean Mathematical Olympiad

Quote:
 Originally Posted by johnny For example, m(x) = n+x+y?
So "where n, x, y can be represented by functions of m" means "m is a function of n, x, and y"?

July 23rd, 2009, 02:12 PM   #6
Senior Member

Joined: Apr 2007

Posts: 2,140
Thanks: 0

Re: The 8th Korean Mathematical Olympiad

Quote:
Originally Posted by CRGreathouse
Quote:
 Originally Posted by johnny For example, m(x) = n+x+y?
So "where n, x, y can be represented by functions of m" means "m is a function of n, x, and y"?
I think so, but I'm 75% sure about it.

### Kmo mathematical function

Click on a term to search for related topics.
 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post hadigh Math Events 0 September 4th, 2013 12:04 PM Eminem_Recovery Math Events 9 January 23rd, 2011 04:36 AM johnny Math Events 1 September 2nd, 2009 07:55 AM johnny Math Events 4 September 2nd, 2009 06:06 AM Eminem_Recovery Algebra 1 December 31st, 1969 04:00 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top