My Math Forum  

Go Back   My Math Forum > College Math Forum > Linear Algebra

Linear Algebra Linear Algebra Math Forum


Thanks Tree1Thanks
  • 1 Post By romsek
Reply
 
LinkBack Thread Tools Display Modes
July 1st, 2019, 09:42 AM   #1
Newbie
 
Joined: Jun 2019
From: London

Posts: 9
Thanks: 0

determinant of symmetric matrix of size (n+1)(n+1)

Let for j = 0,. . . n aj = a0 + jd, where a0, d are fixed real numbers.
Calculate the determinant of the matrix A of size (n + 1) × (n + 1)
Attached Images
File Type: jpg Снимок экрана 2019-07-01 в 20.41.15.jpg (13.9 KB, 1 views)
mathodman25 is offline  
 
July 4th, 2019, 11:53 AM   #2
Senior Member
 
romsek's Avatar
 
Joined: Sep 2015
From: USA

Posts: 2,500
Thanks: 1372

$Det(a_0, d, n) =(-1)^{n - 1} (2^{n - 1} a_0 d^{n - 1} + (n - 1) 2^{n - 2} d^n)$

Now see if you can prove this via induction
Thanks from topsquark
romsek is online now  
July 8th, 2019, 08:44 PM   #3
Newbie
 
fungarwai's Avatar
 
Joined: Jun 2016
From: Hong Kong

Posts: 25
Thanks: 2

$\begin{vmatrix}
a_0 & a_1 & a_2 & \ldots & a_n\\
a_1 & a_0 & a_1 & \ldots & a_{n-1}\\
a_2 & a_1 & a_0 & \ldots & a_{n-2}\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
a_n & a_{n-1} & a_{n-2} & \ldots & a_0
\end{vmatrix}
=\begin{vmatrix}
-d & -d & -d & \ldots & a_n\\
d & -d & -d & \ldots & a_{n-1}\\
d & d & -d & \ldots & a_{n-2}\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
d & d & d & \ldots & a_0
\end{vmatrix}$
$=d^n\begin{vmatrix}
-1 & -1 & -1 & \ldots & a_n\\
1 & -1 & -1 & \ldots & a_{n-1}\\
1 & 1 & -1 & \ldots & a_{n-2}\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
1 & 1 & 1 & \ldots & a_0
\end{vmatrix}
=d^n\begin{vmatrix}
-1 & 0 & 0 & \ldots & a_n\\
1 & -2 & 0 & \ldots & a_{n-1}\\
1 & 0 & -2 & \ldots & a_{n-2}\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
1 & 0 & 0 & \ldots & a_0
\end{vmatrix}$
$=(-2)^{n-1} d^n\begin{vmatrix}
-1 & 0 & 0 & \ldots & a_n\\
1 & 1 & 0 & \ldots & a_{n-1}\\
1 & 0 & 1 & \ldots & a_{n-2}\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
1 & 0 & 0 & \ldots & a_0
\end{vmatrix}
=(-2)^{n-1} d^n\begin{vmatrix}
-1 & a_n\\1 & a_0\end{vmatrix}
=2^{n-1} (-d)^n (2a_0+dn)$
fungarwai is offline  
Reply

  My Math Forum > College Math Forum > Linear Algebra

Tags
determinant, linear algebra, matrix, size, symmetric



Thread Tools
Display Modes


Similar Threads
Thread Thread Starter Forum Replies Last Post
Symmetric Bi-linear Matrix ZMD Linear Algebra 1 December 4th, 2017 11:33 AM
sample size determinant Sancho Advanced Statistics 5 August 9th, 2016 01:59 PM
Why is the following matrix symmetric? noobinmath Linear Algebra 3 November 6th, 2015 06:39 AM
Eigenvector of symmetric matrix queenie_n Linear Algebra 1 November 6th, 2012 06:09 AM
Symmetric matrix and eugenvalues.. BlackOps Linear Algebra 2 February 18th, 2010 08:01 AM





Copyright © 2019 My Math Forum. All rights reserved.