My Math Forum  

Go Back   My Math Forum > College Math Forum > Linear Algebra

Linear Algebra Linear Algebra Math Forum


Reply
 
LinkBack Thread Tools Display Modes
April 15th, 2018, 09:22 AM   #1
Member
 
Joined: Apr 2014
From: Greece

Posts: 56
Thanks: 0

Simplest form of curve equation

I'm kind of confused with this excercise:

In 2d space and in respect to an orthonormal system Oxy we are given the curve with equation:

$\displaystyle x^2-10\sqrt{3}xy+11y^2+64=0$

Find an orthonormal system for which the equation takes the simplest form. What is that form?


I'm confused as to what "simplest form" means.. Is it the canonical form? And how do I find the new orthonormal system?
Vaki is offline  
 
April 15th, 2018, 11:51 AM   #2
Senior Member
 
Joined: Oct 2009

Posts: 350
Thanks: 112

Yes, the canonical form.
Micrm@ss is online now  
April 15th, 2018, 01:06 PM   #3
Global Moderator
 
Joined: May 2007

Posts: 6,494
Thanks: 577

The equation looks like an ellipse. Rotate it so there is no xy term.
mathman is offline  
April 15th, 2018, 08:25 PM   #4
Global Moderator
 
Joined: Dec 2006

Posts: 18,838
Thanks: 1564

With axes rotated by pi/6, one gets $x^2 - 4y^2 = 16$, the equation of a hyperbola.

(Or one can swap the axes to get $y^2 - 4x^2 = 16$.)

Last edited by skipjack; April 16th, 2018 at 06:13 AM.
skipjack is offline  
April 16th, 2018, 03:04 AM   #5
Member
 
Joined: Apr 2014
From: Greece

Posts: 56
Thanks: 0

I rotated the axis by pi/6 but I found indeed a hyperbola but with this equation instead:

$\displaystyle \frac{3x^2}{32} -\frac{y^2}{4}=1$

Here is what I did:

$\displaystyle x=x'\cos(\frac{\pi}{6})-y'*\sin(\frac{\pi}{6})=\frac{\sqrt3}{2}x'-\frac{1}{2}y'$
$\displaystyle y=x'\sin(\frac{\pi}{6})+y'\cos(\frac{\pi}{6})= \frac{1}{2}x'+\frac{\sqrt3}{2}y'$

I then replace the $\displaystyle x,y$ into the equation which gave me

$\displaystyle \left ( \frac{\sqrt{3}}{2}x'-\frac{1}{2}y' \right )^2-10\sqrt3\left (\frac{\sqrt3}{2}x'-\frac{1}{2}y' \right )\left (\frac{1}{2}x'+\frac{\sqrt{3}}{2}y' \right )+11\left (\frac{1}{2}x'+\frac{\sqrt{3}}{2}y' \right )^2$

And after some calculation, I ended with the final equation:

$\displaystyle \frac{3x'^2}{32} -\frac{y'^2}{4}=1$


Did I miss something?

Last edited by skipjack; April 16th, 2018 at 05:54 AM.
Vaki is offline  
April 16th, 2018, 05:06 AM   #6
Math Team
 
Joined: Jan 2015
From: Alabama

Posts: 3,089
Thanks: 846

Since this is in the Linear Algebra sub-forum, write the equation as $\displaystyle \begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix}1 & -5\sqrt{3} \\ -5\sqrt{3} & 11 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}+ 64= 0$.
I have divided the "$\displaystyle -10\sqrt{3}$" terms into the two anti-diagonal terms so that it is a symmetric matrix and has two real eigenvalues.
That matrix has characteristic equation is $\displaystyle \left|\begin{array}{cc}1- \lambda & -5\sqrt{3} \\ -5\sqrt{3} & 11- \lambda\end{array}\right|= \lambda^2- 12\lambda- 64= (\lambda- 16)(\lambda- 4)= 0$ so the eigenvalues are -4 and 16.

To find the eigenvectors corresponding to eigenvalue -4, find x and y such that $\displaystyle \begin{bmatrix}1 & -5\sqrt{3} \\ -5\sqrt{3} & 11 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}= \begin{bmatrix}x- 5\sqrt{3}y \\ -5\sqrt{3}x+ 11y\end{bmatrix}= -4\begin{bmatrix}x \\ y \end{bmatrix}$. The gives the two equations $\displaystyle x- 5\sqrt{3}y= -4x$ and $\displaystyle -5\sqrt{3}x+ 11y= -4y$. Since -4 is an eigenvalue, those two equations are equivalent and reduce to just one equation. For any given y we must have $\displaystyle 5x= 5\sqrt{3}y$ or $\displaystyle x= \sqrt{3}y$. So one eigenvector corresponding to eigenvalue -4 is $\displaystyle \begin{bmatrix}\sqrt{3} \\ 1 \end{bmatrix}$. That has length 2 so a unit eigenvector is $\displaystyle \begin{bmatrix}\frac{\sqrt{3}}{2} \\ \frac{1}{2}\end{bmatrix}$.

Similarly, an eigenvector, $\displaystyle \begin{bmatrix}x \\ y \end{bmatrix}$, corresponding to eigenvalue 16 must satisfy $\displaystyle x- 5\sqrt{3}y= 16x$. For any y we must have $\displaystyle 15x= -5\sqrt{3}y$ or $\displaystyle x= -\frac{\sqrt{3}}{3}a$. So one eigenvector corresponding to eigenvalue 16 is $\displaystyle \begin{bmatrix}-\frac{\sqrt{3}}{3} \\ 1\end{bmatrix}$. That has length $\displaystyle \frac{2}{\sqrt{3}}$ so a unit eigenvector is $\displaystyle \begin{bmatrix}-\frac{1}{2} \\ \frac{\sqrt{3}}{2}\end{bmatrix}$.

Now construct the matrix, P, having those eigenvectors as columns: $\displaystyle P= \begin{bmatrix}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}$. Its inverse matrix is $\displaystyle P^{-1}= \begin{bmatrix}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}$, the transpose of P.
P
All of that gives $\displaystyle PAP^{-1}= \begin{bmatrix}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}1 & -5\sqrt{3} \\ -5\sqrt{3} & 11 \end{bmatrix}\begin{bmatrix}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}= \begin{bmatrix}-4 & 0 \\ 0 & 16\end{bmatrix}$.

Writing "D" for that diagonal matrix, we can write the original equation, $\displaystyle X^TAX+ 65= 0$ as $\displaystyle X^TP^{-1}PAP^{-1}PX+ 64= (PX)^TD(PX)+ 64= 0$.

With $\displaystyle X= \begin{bmatrix}x \\ y \end{bmatrix}$, $\displaystyle PX= \begin{bmatrix}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}= \begin{bmatrix}\frac{x\sqrt{3}}{2}- \frac{y}{2} \\ \frac{x}{2}+ \frac{y\sqrt{3}}{2}\end{bmatrix}$ so that
$\displaystyle (PX)^TD(PX)+ 64= 0$ becomes $\displaystyle \begin{bmatrix}\frac{x\sqrt{3}}{2}- \frac{y}{2} & \frac{x}{2}+ \frac{y\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}-4 & 0 \\ 0 & 11\end{bmatrix}\begin{bmatrix}\frac{x\sqrt{3}}{2}- \frac{y}{2} \\ \frac{x}{2}+ \frac{y\sqrt{3}}{2}\end{bmatrix}+ 64= 0$.

Finally, if we take $\displaystyle x'= \frac{x\sqrt{3}}{2}- \frac{y}{2}$ and $\displaystyle y'= \frac{x}{2}+ \frac{y\sqrt{3}}{2}$ that will be written as
$\displaystyle -4x'^2+ 16y'^2+ 64= 0$ which, dividing both sides by 64 gives $\displaystyle \frac{y'^2}{4}- \frac{x'^2}{16}= 1$, the equation of a hyperbola.
Country Boy is offline  
April 16th, 2018, 06:16 AM   #7
Global Moderator
 
Joined: Dec 2006

Posts: 18,838
Thanks: 1564

You introduced a sign error in your final step.
skipjack is offline  
Reply

  My Math Forum > College Math Forum > Linear Algebra

Tags
curve, equation, form, simplest



Thread Tools
Display Modes


Similar Threads
Thread Thread Starter Forum Replies Last Post
Reducing fractions to its simplest form ( with exponents) A9810A Algebra 2 October 19th, 2017 09:36 AM
Divide and state the quotient in simplest form 2. multiply and state in simplest form tutorguy Algebra 3 June 1st, 2016 07:01 AM
write radical expression in simplest form mick7 Algebra 1 July 19th, 2015 08:41 AM
Do I not list simplest form? Opposite Algebra 6 October 17th, 2014 02:22 AM
What is the simplest form of this naufalzhafran Elementary Math 2 March 9th, 2014 12:20 AM





Copyright © 2018 My Math Forum. All rights reserved.