![]() |
|
Linear Algebra Linear Algebra Math Forum |
![]() |
| LinkBack | Thread Tools | Display Modes |
April 15th, 2018, 09:22 AM | #1 |
Member Joined: Apr 2014 From: Greece Posts: 56 Thanks: 0 | Simplest form of curve equation
I'm kind of confused with this excercise: In 2d space and in respect to an orthonormal system Oxy we are given the curve with equation: $\displaystyle x^2-10\sqrt{3}xy+11y^2+64=0$ Find an orthonormal system for which the equation takes the simplest form. What is that form? I'm confused as to what "simplest form" means.. Is it the canonical form? And how do I find the new orthonormal system? |
![]() |
April 15th, 2018, 11:51 AM | #2 |
Senior Member Joined: Oct 2009 Posts: 350 Thanks: 112 |
Yes, the canonical form.
|
![]() |
April 15th, 2018, 01:06 PM | #3 |
Global Moderator Joined: May 2007 Posts: 6,494 Thanks: 577 |
The equation looks like an ellipse. Rotate it so there is no xy term.
|
![]() |
April 15th, 2018, 08:25 PM | #4 |
Global Moderator Joined: Dec 2006 Posts: 18,838 Thanks: 1564 |
With axes rotated by pi/6, one gets $x^2 - 4y^2 = 16$, the equation of a hyperbola. (Or one can swap the axes to get $y^2 - 4x^2 = 16$.) Last edited by skipjack; April 16th, 2018 at 06:13 AM. |
![]() |
April 16th, 2018, 03:04 AM | #5 |
Member Joined: Apr 2014 From: Greece Posts: 56 Thanks: 0 |
I rotated the axis by pi/6 but I found indeed a hyperbola but with this equation instead: $\displaystyle \frac{3x^2}{32} -\frac{y^2}{4}=1$ Here is what I did: $\displaystyle x=x'\cos(\frac{\pi}{6})-y'*\sin(\frac{\pi}{6})=\frac{\sqrt3}{2}x'-\frac{1}{2}y'$ $\displaystyle y=x'\sin(\frac{\pi}{6})+y'\cos(\frac{\pi}{6})= \frac{1}{2}x'+\frac{\sqrt3}{2}y'$ I then replace the $\displaystyle x,y$ into the equation which gave me $\displaystyle \left ( \frac{\sqrt{3}}{2}x'-\frac{1}{2}y' \right )^2-10\sqrt3\left (\frac{\sqrt3}{2}x'-\frac{1}{2}y' \right )\left (\frac{1}{2}x'+\frac{\sqrt{3}}{2}y' \right )+11\left (\frac{1}{2}x'+\frac{\sqrt{3}}{2}y' \right )^2$ And after some calculation, I ended with the final equation: $\displaystyle \frac{3x'^2}{32} -\frac{y'^2}{4}=1$ Did I miss something? Last edited by skipjack; April 16th, 2018 at 05:54 AM. |
![]() |
April 16th, 2018, 05:06 AM | #6 |
Math Team Joined: Jan 2015 From: Alabama Posts: 3,089 Thanks: 846 |
Since this is in the Linear Algebra sub-forum, write the equation as $\displaystyle \begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix}1 & -5\sqrt{3} \\ -5\sqrt{3} & 11 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}+ 64= 0$. I have divided the "$\displaystyle -10\sqrt{3}$" terms into the two anti-diagonal terms so that it is a symmetric matrix and has two real eigenvalues. That matrix has characteristic equation is $\displaystyle \left|\begin{array}{cc}1- \lambda & -5\sqrt{3} \\ -5\sqrt{3} & 11- \lambda\end{array}\right|= \lambda^2- 12\lambda- 64= (\lambda- 16)(\lambda- 4)= 0$ so the eigenvalues are -4 and 16. To find the eigenvectors corresponding to eigenvalue -4, find x and y such that $\displaystyle \begin{bmatrix}1 & -5\sqrt{3} \\ -5\sqrt{3} & 11 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}= \begin{bmatrix}x- 5\sqrt{3}y \\ -5\sqrt{3}x+ 11y\end{bmatrix}= -4\begin{bmatrix}x \\ y \end{bmatrix}$. The gives the two equations $\displaystyle x- 5\sqrt{3}y= -4x$ and $\displaystyle -5\sqrt{3}x+ 11y= -4y$. Since -4 is an eigenvalue, those two equations are equivalent and reduce to just one equation. For any given y we must have $\displaystyle 5x= 5\sqrt{3}y$ or $\displaystyle x= \sqrt{3}y$. So one eigenvector corresponding to eigenvalue -4 is $\displaystyle \begin{bmatrix}\sqrt{3} \\ 1 \end{bmatrix}$. That has length 2 so a unit eigenvector is $\displaystyle \begin{bmatrix}\frac{\sqrt{3}}{2} \\ \frac{1}{2}\end{bmatrix}$. Similarly, an eigenvector, $\displaystyle \begin{bmatrix}x \\ y \end{bmatrix}$, corresponding to eigenvalue 16 must satisfy $\displaystyle x- 5\sqrt{3}y= 16x$. For any y we must have $\displaystyle 15x= -5\sqrt{3}y$ or $\displaystyle x= -\frac{\sqrt{3}}{3}a$. So one eigenvector corresponding to eigenvalue 16 is $\displaystyle \begin{bmatrix}-\frac{\sqrt{3}}{3} \\ 1\end{bmatrix}$. That has length $\displaystyle \frac{2}{\sqrt{3}}$ so a unit eigenvector is $\displaystyle \begin{bmatrix}-\frac{1}{2} \\ \frac{\sqrt{3}}{2}\end{bmatrix}$. Now construct the matrix, P, having those eigenvectors as columns: $\displaystyle P= \begin{bmatrix}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}$. Its inverse matrix is $\displaystyle P^{-1}= \begin{bmatrix}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}$, the transpose of P. P All of that gives $\displaystyle PAP^{-1}= \begin{bmatrix}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}1 & -5\sqrt{3} \\ -5\sqrt{3} & 11 \end{bmatrix}\begin{bmatrix}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}= \begin{bmatrix}-4 & 0 \\ 0 & 16\end{bmatrix}$. Writing "D" for that diagonal matrix, we can write the original equation, $\displaystyle X^TAX+ 65= 0$ as $\displaystyle X^TP^{-1}PAP^{-1}PX+ 64= (PX)^TD(PX)+ 64= 0$. With $\displaystyle X= \begin{bmatrix}x \\ y \end{bmatrix}$, $\displaystyle PX= \begin{bmatrix}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}= \begin{bmatrix}\frac{x\sqrt{3}}{2}- \frac{y}{2} \\ \frac{x}{2}+ \frac{y\sqrt{3}}{2}\end{bmatrix}$ so that $\displaystyle (PX)^TD(PX)+ 64= 0$ becomes $\displaystyle \begin{bmatrix}\frac{x\sqrt{3}}{2}- \frac{y}{2} & \frac{x}{2}+ \frac{y\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}-4 & 0 \\ 0 & 11\end{bmatrix}\begin{bmatrix}\frac{x\sqrt{3}}{2}- \frac{y}{2} \\ \frac{x}{2}+ \frac{y\sqrt{3}}{2}\end{bmatrix}+ 64= 0$. Finally, if we take $\displaystyle x'= \frac{x\sqrt{3}}{2}- \frac{y}{2}$ and $\displaystyle y'= \frac{x}{2}+ \frac{y\sqrt{3}}{2}$ that will be written as $\displaystyle -4x'^2+ 16y'^2+ 64= 0$ which, dividing both sides by 64 gives $\displaystyle \frac{y'^2}{4}- \frac{x'^2}{16}= 1$, the equation of a hyperbola. |
![]() |
April 16th, 2018, 06:16 AM | #7 |
Global Moderator Joined: Dec 2006 Posts: 18,838 Thanks: 1564 |
You introduced a sign error in your final step.
|
![]() |
![]() |
|
Tags |
curve, equation, form, simplest |
Thread Tools | |
Display Modes | |
|
![]() | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Reducing fractions to its simplest form ( with exponents) | A9810A | Algebra | 2 | October 19th, 2017 09:36 AM |
Divide and state the quotient in simplest form 2. multiply and state in simplest form | tutorguy | Algebra | 3 | June 1st, 2016 07:01 AM |
write radical expression in simplest form | mick7 | Algebra | 1 | July 19th, 2015 08:41 AM |
Do I not list simplest form? | Opposite | Algebra | 6 | October 17th, 2014 02:22 AM |
What is the simplest form of this | naufalzhafran | Elementary Math | 2 | March 9th, 2014 12:20 AM |