
Linear Algebra Linear Algebra Math Forum 
 LinkBack  Thread Tools  Display Modes 
February 18th, 2018, 10:25 AM  #1 
Senior Member Joined: Jan 2017 From: Toronto Posts: 209 Thanks: 3  EigenValues and differential equations.. Please check my math
Suppose P is the projection matrix onto the 45◦ line y = x in R2. Its eigenvalues are 1 and 0 with eigenvectors (1, 1) and (1,−1). If dy/dt = −Py (notice minus sign) can you find the limit of y(t) at t = ∞ starting from y(0) = (3, 1)? My Solution: dt/dy = Py, the eigenvalues are now 1 and 0 and eigenvectors $\displaystyle u_1 = (1, 1)$ and $\displaystyle u_2 = (1, 1)$ $\displaystyle f(t) = c_1 e^{t} u_1 + c_2 e^{0t} u_2 \\ f(0) = c_1 u_1 + c_2 u_2 = (3, 1), So. c_1 = 2 ~and~ c_2 = 1 \\ f(t) = 2 e^{t} u_1 + u_2 \\ f(∞) = u_2 = (1, 1) $ Am I correct? 
February 18th, 2018, 11:14 AM  #2 
Senior Member Joined: Sep 2016 From: USA Posts: 578 Thanks: 345 Math Focus: Dynamical systems, analytic function theory, numerics 
You seem to have a good method but you seem to be choosing different eigenvectors in different steps leading to a trivial mistake. If you set $u_2 = (1,1)$, then your $c_2$ value is wrong. It looks like you computed it with $u_2 = (1,1)$ instead. It actually doesn't matter which vector you pick but it must be consistent. If you leave your $c_1,c_2$ alone, this corresponds to picking the eigenvector $u_2 = (1,1)$ which you have initially at the top. In this case, you should get the trajectory limits to $(1,1)$. You can justify this geometrically as well since $P$ generates a vector field with all vectors parallel to the vector $(1,1)$. Thus, every trajectory can be computed explicitly by using basic algebra to find the intersection of lines. In this example, the trajectory through $(3,1)$ is a line with slope 1 so it is parameterized by the line $y = x2$. The trajectory approaches the line $y = x$ asymptotically with the collision at $t = \infty$ given by the intersection of these lines which is easily seen to occur when $x = 1$ and thus $y = 1$. 

Tags 
check, differential, eigenvalues, equations, math 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Please check my math..  zollen  Calculus  2  October 21st, 2017 09:50 AM 
Partial Differential Differential Equations  rishav.roy10  Differential Equations  0  August 21st, 2013 05:59 AM 
System of differential equations with eigenvalues?  Norm850  Differential Equations  1  February 29th, 2012 03:26 PM 
System of differential equations with repeating eigenvalues  silentwf  Differential Equations  5  January 3rd, 2010 03:43 PM 
To check solution of differential equation  knowledgegain  Differential Equations  2  April 30th, 2009 09:58 AM 