My Math Forum Local extrema

 Linear Algebra Linear Algebra Math Forum

 April 29th, 2017, 08:52 AM #1 Member   Joined: Nov 2016 From: Kansas Posts: 73 Thanks: 1 Local extrema f(x,y)=ysin(x) what will be the critical and saddle points for the function?
 April 29th, 2017, 05:57 PM #2 Senior Member     Joined: Sep 2015 From: USA Posts: 2,314 Thanks: 1230 $f(x,y)=y \sin(x)$ $f_x=y\cos(x)$ $f_y=\sin(x)$ critical points at $f_x=0 \text{ and } f_y=0$ $f_x = 0 \Rightarrow y =0,\text{ or }x=\dfrac{\pi}{2} + k \pi, ~k\in \mathbb{Z}$ $f_y = 0 \Rightarrow x = k \pi,~k \in \mathbb{Z}$ so the critical points are $x = k \pi,~k \in \mathbb{Z},~y=0$ now we apply the 2nd derivative text $f_{xx}=-y\sin(x)$ $f_{yy} = 0$ $f_{xy} = \cos(x)$ $H = \begin{pmatrix}f_{xx} &f_{xy} \\ f_{xy} &f_{yy}\end{pmatrix} = \begin{pmatrix} -y\sin(x) &\cos(x) \\ \cos(x) &0\end{pmatrix}$ $D=|H| = -\cos^2(x) < 0,~\forall x$ Thus these critical points are saddle points

 Tags extrema, local

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post life24 Calculus 7 May 16th, 2016 04:34 PM Mrto Calculus 3 April 23rd, 2016 04:26 PM mike1127 Calculus 2 March 22nd, 2016 01:17 AM CPAspire Pre-Calculus 2 March 27th, 2015 08:52 AM crnogorac Calculus 1 December 24th, 2013 05:03 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top