
Linear Algebra Linear Algebra Math Forum 
 LinkBack  Thread Tools  Display Modes 
December 6th, 2016, 06:02 PM  #1 
Newbie Joined: Dec 2016 From: Florida Posts: 1 Thanks: 0  Bilinear Transformations
**Question** Let V and W be vector spaces over a field F and let $T \in Hom (V,W)$. For each $g \in Bil(W\times W)$, define $g(T): V \times V \to F$ by setting $g(T): (x, y) \mapsto (T(x), T(y))$. a) Prove that $g(T) \in Bil (V \times V)$. b) Prove that $K:Bil(W \times W) \to Bil (V \times V)$ defined by setting $g \mapsto g(T)$ is a linear transformation. **My Attempt** a) In order to prove bilinear we need to show that $$f(au_1+bâ‹…u_2,v)=af(u_1,v)+bf(u_2,v)$$ $$f(u,av_1+bv_2)=af(u,v_1)+bf(u,v_2)$$ Let $x=\langle x_1,x_2\rangle$ and $y=\langle y_1,y_2\rangle$, then $\begin{align}g(ax_1+bx_2,y)&=g(a\langle x_{11},x_{12}\rangle+b\langle x_{21},x_{22}\rangle,\langle y_1,y_2\rangle)\\ &=g(T(a\langle x_{11},x_{12}\rangle+b\langle x_{21},x_{22}\rangle),T(\langle y_1,y_2\rangle))\\ &=g(T(a\langle x_{11},x_{12}\rangle)+T(b\langle x_{21},x_{22}\rangle)),T(\langle y_1,y_2\rangle))\end{align}$ This is where I get stuck. I've never done this with transformations, can I just split this and distribute (for lack of a better term) the T? Also, for b, how does the bilinear affect the proof for a linear transformation? 

Tags 
bilinear, transformations 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Bilinear Transformation  mhhojati  Complex Analysis  3  November 20th, 2013 05:27 PM 
bilinear map  DUET  Abstract Algebra  3  August 8th, 2013 01:26 PM 
exactly one bilinear form  sigma123  Linear Algebra  1  January 14th, 2013 02:27 AM 
Bilinear form  fed2black  Linear Algebra  1  August 13th, 2010 12:04 PM 
Bilinear interpolation  shtuceron  Linear Algebra  0  April 23rd, 2009 12:35 PM 