My Math Forum Not sure if this belongs here but i'll give it a shot

 Linear Algebra Linear Algebra Math Forum

 September 13th, 2012, 09:06 PM #1 Newbie   Joined: Sep 2012 Posts: 10 Thanks: 0 Not sure if this belongs here but i'll give it a shot Hi, i'm not sure if this is the correct place to post this but im having trouble with this question Find two vectors v?1 and v?2 whose sum is ?0,2,5?, where v?1 is parallel to ?1,0,?4? while v?2 is perpendicular to ?1,0,?4? I was able to find that y1=0 and y2=2 but am having trouble finding out what x1, x2, z1, z2 are Any help would be great Thanks
September 13th, 2012, 10:02 PM   #2
Math Team

Joined: Dec 2006
From: Lexington, MA

Posts: 3,267
Thanks: 408

Re: Not sure if this belongs here but i'll give it a shot

Quote:
 $\text{Find two vectors }\vec{v_1}\text{ and }\vec{v_2}\text{ whose sum is }\langle0,\,2,\,5\rangle, \;\;\;\text{where }\vec{v_1}\,\parallel\,\langle1,\,0,\,-4\rangle\,\text{ and }\,\vec{v_2}\,\perp \,\langle1,\,0,\,-4\rangle$

$\text{Let: }\:\begin{Bmatrix}\vec{v_1}=&\langle x_1,\,y_1,\,z_1\rangle \\ \\ \\ \vec{v_2}=&\langle x_2,\,y_2,\,z_2\rangle \end{Bmatrix}=$

$\text{Their sum is }\langle 0,2,5\rangle:\;\;\begin{Bmatrix}x_1+x_2 \:=\:0 & \;\;\Rightarrow\;\; & x_2 &=& -x_1 \\ \\ \\
y_1+y_2 \:=\:2 & \Rightarrow & y_2 &=& 2-y_1 \\ \\ \\
z_1+z_2\:=\:5 & \Rightarrow & z_2 &=& 5-z_1 \end{Bmatrix}$
[color=beige] .[/color][color=blue][1][/color]

$\vec{v_1}\,\parallel\,\langle1,0,-4\rangle \;\;\;\Rightarrow\;\;\; \langle x_1,y_1,z_1\rangle \,=\,a\langle 1,0,-4\rangle \;\;\;\Rightarrow\;\;\; \begin{Bmatrix}x_1 &a \\ \\ y_1=&0 \\ \\ z_1=&-4a \end{Bmatrix}=$[color=beige] .[/color][color=blue][2][/color]

$\vec{v_2}\,\perp\,\langle 1,0,-4\rangle \;\;\;\Rightarrow\;\;\;\langle x_2,y_2,z_2\rangle\cdot\langle1,0,-4\rangle \:=\:0 \;\;\;\Rightarrow\;\;\; x_2\,-\,4z_2 \:=\:0$

Substitute [color=blue][1][/color]:[color=beige] .[/color]$-x_1\,-\,4(5\,-\,z_1) \:=\:0 \;\;\;-x_1\,-\,20\,+\,4z_1\:=\:0$

Substitute [color=blue][2][/color]:[color=beige] .[/color]$-a\,-\,20\,+\,4(-4a) \:=\:0 \;\;\;-17a \:=\:20 \;\;\;\Rightarrow\;\;\;a \:=\:-\frac{20}{17}$

Substitute into [color=blue][2][/color]:[color=beige] .[/color]$\begin{Bmatrix}x_1=&-\frac{20}{17} \\ \\ y_1=&0 \\ \\ z_1=&\frac{80}{17\end{Bmatrix} \;\;\;\Rightarrow\;\;\;\vec{v_1} \;=\;\left\langle -\frac{20}{17},\:0,\:\frac{80}{17}\right\rangle$

Substitute into [color=blue][1][/color]:[color=beige] .[/color]$\begin{Bmatrix}x_2=&\frac{20}{17} \\ \\ y_2=&2 \\ \\ z_2=&\frac{5}{17} \end{Bmatrix} \;\;\;\Rightarrow\;\;\;l\vec{v_2} \;=\;\left\langle \frac{20}{17},\:2,\:\frac{5}{17}\right\rangle$

 September 13th, 2012, 10:30 PM #3 Newbie   Joined: Sep 2012 Posts: 10 Thanks: 0 Re: Not sure if this belongs here but i'll give it a shot Thanks a lot soroban

 Tags belongs, give, shot

,

,

# The addition of two vectors and gives a third vector known as the --------------of the two vectors

Click on a term to search for related topics.
 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post wuspengret Algebra 0 September 28th, 2013 06:59 AM sharp Elementary Math 3 October 27th, 2010 03:36 PM MathChallenged2010 New Users 7 February 25th, 2010 10:15 PM mrguy Algebra 1 November 28th, 2009 06:36 AM titans4ever0927 Calculus 1 March 24th, 2009 06:08 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top