
Elementary Math Fractions, Percentages, Word Problems, Equations, Inequations, Factorization, Expansion 
 LinkBack  Thread Tools  Display Modes 
July 22nd, 2015, 05:25 AM  #1 
Newbie Joined: Jul 2015 From: Poland Posts: 1 Thanks: 0  strange (??) proof
I'm 30 years computer programist from Poland. My hobby is cybernetic, AI, math. My English is not perfect, but I can read well. Please tell me where I'm wrong. We have $\displaystyle \mathbb{N}$={1,2,3,...} We have $\displaystyle \mathbb{N}_{0}$={0,1,2,3,...} from definition: $\displaystyle \forall n \in \mathbb{N}_{0}$ n=0+1+1+...+1 $\displaystyle \forall n \in \mathbb{N}_{0}$ n111...1=0 We can create length function $\displaystyle F_{L} : \mathbb{N}_{0} \to \mathbb{N} \cup \lbrace \infty \rbrace $ $\displaystyle F_{L}(0)=1$ $\displaystyle F_{L}(1)=1$ $\displaystyle F_{L}(2)=1$ ... $\displaystyle F_{L}(10)=2$ ... $\displaystyle F_{L}(123)=3$ ... $\displaystyle \forall n \in \mathbb{N}_{0} F_{L}(n) < \infty$ proof how we can create x that $\displaystyle F_{L}(x)=\infty$ we have y=$\displaystyle \Pi  3$=0.1415... we create x=...5141 we have Y$\displaystyle \subset(0,1>$ that Y is set of all irrational numbers or (I can't write what ??) exist Lech Kaczynski function $\displaystyle F_{LK}: Y \to X$ that $\displaystyle F_{LK}(0.1415...)=...5141$ because $\displaystyle F_{LK}$ is bijection Y=X=c because X>$\displaystyle \mathbb{N}_{0}$ $\displaystyle X \not\subset \mathbb{N}_{0}$ perhaps exist $\displaystyle A_{\infty} \subset X: A_{\infty} \subset \mathbb{N}_{0} $ and $\displaystyle A_{\infty} \le \aleph_{0}$ if $\displaystyle A_{\infty} \neq \emptyset$ then exist $\displaystyle x_{a} \in A_{\infty}$ $\displaystyle x_{a}=...x_{2}x_{1}x_{0}$ if $\displaystyle x_{0} > 0$ then $\displaystyle x_{a}1=...x_{2}x_{1}(x_{0}1)$ $\displaystyle F_{L}(x_{a})=F_{L}(x_{a}1)=\infty$ if $\displaystyle x_{0}=0$ then $\displaystyle x_{a}=...x_{q+2}x_{q+1}x_{q}0...000$ and $\displaystyle x_{a}=...x_{q+1}(x_{q}1)9...999$ $\displaystyle F_{L}(x_{a})=F_{L}(x_{a}1)=\infty$ because $\displaystyle \forall x_{a} \in X : x_{a}  111... \neq 0$ that $\displaystyle A_{\infty} = \emptyset$ end of proof we can create $\displaystyle A_{1} \subset \mathbb{N}_{0} : \forall n \in \mathbb{N}_{0} F_{LK}(n)=1$ $\displaystyle A_{1}=${0,1,2,3...9} $\displaystyle A_{1}=10$ $\displaystyle A_{2} \subset \mathbb{N}_{0} : \forall n \in \mathbb{N}_{0} F_{LK}(n)=2$ $\displaystyle A_{2}=${10,11,12,...,99} $\displaystyle A_{1}=90$ ... if x>1 we can create $\displaystyle A_{x} \subset \mathbb{N}_{0} : \forall n \in \mathbb{N}_{0} F_{LK}(n)=x$ $\displaystyle A_{x}=${$\displaystyle 10^{x1},10^{x1}+1,...,10^{x}1$} $\displaystyle A_{x}=9*10^{x1}$ using induction, we can prove that $\displaystyle A_{1} \cup A_{2} \cup A_{3}... = \mathbb{N}_{0}$ $\displaystyle A_{1} \cup A_{2} \cup A_{3}... = \mathbb{N}_{0} = \aleph_{0}$ we can create A={$\displaystyle A_{1},A_{2},A_{3},...$} A=$\displaystyle \aleph_{0}$ $\displaystyle A_{\infty} \not\in A$ we create $\displaystyle A_{n}=$($\displaystyle A_{1},A_{2},A_{3},...$) $\displaystyle S_{n}=$($\displaystyle S_{1}=A_{1},S_{2}=S_{1} \cup A_{2},S_{3}=S_{2}\cup A_{3},...$) $\displaystyle P_{n}=$($\displaystyle S_{1},S_{2},S_{3},...$) $\displaystyle P_{n}$={10,100,1000,...} using induction, we prove that $\displaystyle A_{1} \cup A_{2} \cup A_{3}... < \aleph_{0}$ for n=1 $\displaystyle P_{1}=10 < \aleph_{0}$ if is true that for n is true $\displaystyle P_{n} < \aleph_{0}$ $\displaystyle P_{n+1}=10*P_{n} $ and $\displaystyle P_{n+1} < \aleph_{0} $ Last edited by skipjack; July 22nd, 2015 at 06:06 AM. 
July 22nd, 2015, 07:11 AM  #2 
Global Moderator Joined: Nov 2006 From: UTC 5 Posts: 16,046 Thanks: 938 Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms 
If I understand correctly, your claim is that every nonnegative integer has a length (in decimal digits) which is finite. This is correct.

July 22nd, 2015, 09:40 AM  #3 
Math Team Joined: Jan 2015 From: Alabama Posts: 3,264 Thanks: 902 
But your statement that "we can create x such that $\displaystyle F_L(n)= \infty$" is wrong. Your function $\displaystyle F_L$ is only defined for integers and the "length" of any integer is finite. You have "we have y=Π−3=0.1415... we create x=...5141" which, I think, means that you have reversed the decimal part of $\displaystyle \pi$. But there is no such integer every integer has a "first" or "highest signicance" digit while "...5141" does not. 
July 22nd, 2015, 09:52 AM  #4 
Global Moderator Joined: Nov 2006 From: UTC 5 Posts: 16,046 Thanks: 938 Math Focus: Number theory, computational mathematics, combinatorics, FOM, symbolic logic, TCS, algorithms  

Tags 
proof, strange 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Strange sequence  Bogauss  Number Theory  32  March 4th, 2012 04:39 PM 
Riemann Summ Limit Proof (strange question to me)  master555  Real Analysis  1  January 14th, 2012 11:55 AM 
strange sum  capea  Real Analysis  0  September 29th, 2011 11:12 AM 
a strange integer  fathwad  Number Theory  10  May 28th, 2007 01:42 PM 
the strange set  bigli  Real Analysis  3  May 27th, 2007 03:31 PM 