My Math Forum  

Go Back   My Math Forum > High School Math Forum > Elementary Math

Elementary Math Fractions, Percentages, Word Problems, Equations, Inequations, Factorization, Expansion


Reply
 
LinkBack Thread Tools Display Modes
April 17th, 2018, 08:53 AM   #1
Senior Member
 
Joined: Aug 2014
From: India

Posts: 332
Thanks: 1

A salesman sells an article at 8% loss

A salesman sells an article at 8% loss. Had he bought the article at 12% less and and sold it at 26 more, he would have made a profit of $11\dfrac{1}{9}$% Find the new selling price of the article.

Solution: Let the cost price of the article be 100c

Selling price of the article = 92 c

New cost price = 88c

New selling price = 92c + 26

Given

$92c + 23 = \dfrac{10}{9}\times88c \rightarrow c = 4.5$

$\therefore$ Required new selling price
= 92 x 4.5 + 26 = 440

I have two questions:

How new selling price is 92c + 26 rather than 88c + 26?

How $\dfrac{10}{9}$ is obtained?

Last edited by Ganesh Ujwal; April 17th, 2018 at 09:05 AM.
Ganesh Ujwal is offline  
 
April 17th, 2018, 04:29 PM   #2
Math Team
 
Joined: Jan 2015
From: Alabama

Posts: 3,261
Thanks: 894

Quote:
Originally Posted by Ganesh Ujwal View Post
A salesman sells an article at 8% loss. Had he bought the article at 12% less and and sold it at 26 more, he would have made a profit of $11\dfrac{1}{9}$% Find the new selling price of the article.

Solution: Let the cost price of the article be 100c

Selling price of the article = 92 c

New cost price = 88c

New selling price = 92c + 26

Given

$92c + 23 = \dfrac{10}{9}\times88c \rightarrow c = 4.5$

$\therefore$ Required new selling price
= 92 x 4.5 + 26 = 440

I have two questions:

How new selling price is 92c + 26 rather than 88c + 26?
"sold it at 26 more", in English, means sold it for 26 more than he had sold it for in the first scenario. So this is 26 more than the 92c he had sold it for in the first place, not 26 more than the cost.

Quote:
How $\dfrac{10}{9}$ is obtained?
$1+ 11\frac{1}{9}%= (100+ \frac{100}{9})%= \frac{1000}{9}%$ which, dividing by 100 (since it is a "percent") is $\frac{10}{9}$.

Last edited by Country Boy; April 17th, 2018 at 04:45 PM.
Country Boy is offline  
April 17th, 2018, 06:09 PM   #3
Math Team
 
Joined: Oct 2011
From: Ottawa Ontario, Canada

Posts: 13,314
Thanks: 935

Ganesh, are your problems translated from another language?
Denis is online now  
April 17th, 2018, 06:50 PM   #4
Senior Member
 
Joined: Aug 2014
From: India

Posts: 332
Thanks: 1

Quote:
Originally Posted by Denis View Post
Ganesh, are your problems translated from another language?
The question is from English. please don't ask too many questions. I am learner, learner should ask questions.
Ganesh Ujwal is offline  
April 17th, 2018, 06:57 PM   #5
Senior Member
 
Joined: Aug 2014
From: India

Posts: 332
Thanks: 1

Quote:
Originally Posted by Country Boy View Post
$1+ 11\frac{1}{9}%= (100+ \frac{100}{9})%= \frac{1000}{9}%$ which, dividing by 100 (since it is a "percent") is $\frac{10}{9}$.
How $1+ 11\frac{1}{9}$ is obtained?
Ganesh Ujwal is offline  
April 18th, 2018, 09:34 PM   #6
Math Team
 
Joined: Oct 2011
From: Ottawa Ontario, Canada

Posts: 13,314
Thanks: 935

Ask Mr. Johnson:

S.O.S. Mathematics CyberBoard • View topic - A salesman sells an article at 8% loss
Denis is online now  
April 18th, 2018, 10:15 PM   #7
Senior Member
 
Joined: Aug 2014
From: India

Posts: 332
Thanks: 1

Feel free to ignore me.
Ganesh Ujwal is offline  
Reply

  My Math Forum > High School Math Forum > Elementary Math

Tags
article, loss, salesman, sells



Thread Tools
Display Modes


Similar Threads
Thread Thread Starter Forum Replies Last Post
Extreme traveling salesman Loren Number Theory 7 October 21st, 2016 04:28 AM
travelling salesman problem PHOENIX1N30H9 Computer Science 5 December 4th, 2014 05:17 AM
solving travelling salesman problem PHOENIX1N30H9 Topology 0 November 4th, 2014 06:41 AM
Traveling Salesman Problem Maffie Giraffie Algebra 10 October 1st, 2013 09:36 AM
Traveling salesman problem Bogauss Computer Science 49 March 4th, 2012 03:48 PM





Copyright © 2018 My Math Forum. All rights reserved.