My Math Forum  

Go Back   My Math Forum > High School Math Forum > Elementary Math

Elementary Math Fractions, Percentages, Word Problems, Equations, Inequations, Factorization, Expansion


Thanks Tree2Thanks
Reply
 
LinkBack Thread Tools Display Modes
May 26th, 2016, 07:03 AM   #1
Banned Camp
 
Joined: May 2016
From: earth

Posts: 703
Thanks: 56

Euler Paths and Euler Circuits

Hello,
What is what is Euler Paths and Euler Circuits?
MMath is offline  
 
May 26th, 2016, 07:16 AM   #2
Senior Member
 
Joined: Dec 2012
From: Hong Kong

Posts: 853
Thanks: 311

Math Focus: Stochastic processes, statistical inference, data mining, computational linguistics
Quote:
Originally Posted by MMath View Post
Hello,
What is what is Euler Paths and Euler Circuits?
Do you know about the seven bridges of Konigsberg?
123qwerty is offline  
May 26th, 2016, 07:34 AM   #3
Banned Camp
 
Joined: May 2016
From: earth

Posts: 703
Thanks: 56

ok yes then..
[IMG] cdHykgGB0lHxoYITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0O GxAQGi4lICUtLS4tLy0tKy0tLS01Ly0tLS0tNS0vLS0tLi0tLS 0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAKQBMwMBIgACEQEDEQH/xAAbAAABBQEBAAAAAAAAAAAAAAAEAAIDBQYBB//EAEsQAAIBAgMEAwsJBgQGAgMAAAECAwARBBIhBRMxQSJRYQYjM kJSU2JxgZGxFBUzcpKhwdHSQ4KTorLCY3Ph8CRUg6PT4hY0B7P x/8QAGgEBAAIDAQAAAAAAAAAAAAAAAAEEAgMFBv/EADIRAAIBAgQDBQgDAQEBAAAAAAABAgMRBBIhMQVBURMUIpGhM mFxgbHR4fBCUvHBJAb/2gAMAwEAAhEDEQA/APTe6XuhfDSJGqRnNE8hLs48AoMoCIxJOb7qaO6+KykhlAtvGI ORO9GawcaM1rf7tc/bWzYXIlk3gZAUUxyPG1nZbrdWF7kL7q4vc3hgm73XQLZ8tza+7 3PC/kC1uHPjQAUfdYmaRXilUqQFXJ3wgpvGYpyAF9b/AH0j3a4TXpmwTPfLx6AlKgXvmCEE6W466Gw+0O5qN80cUjK4IZ 3kZ3JzI0ds2cMDlHC9jpcGiBsPBwoTmIIjCkiUqTZAmYAEWYhQ LipswWHz5HuFns+VmCquW7sxOUKovY68wbc72oXZvdAJ8Ruo0O QRZ2Zrghs7RmMryIKsDrxHOux4DBiEQhlVc+80ls4fNnzhw1wb/G3Cn4CDCwON2VzMpUneZrgM0hLEk3JZybnU3pZgrNl92SzI7hA FjUB+JbeucqRogF2B4ZtBfQXsbGp3VQ3AYSA36QEZ730913zqs 1gbXGtxprUjbCwZVVsLImQWkIIXMHGoNyQwuDxBvbjTcNsnCHP pc+AxaQksQ4luTe5ObW/ZbhSzByPuqh6F85zFQWVCUUuxVVY8QSQf9kVAvdhGxiMccjo+e 5C9IZAjAheYIbXW4ta19KF2jsCFXSRZQsSMjFFJzFlcsNc+U3Z tSwJA4EUYO5/BDgxViScwnYMbqEN2DXOgtrSzA6TuzwgJ6ZIC5rhSQeiHyqOJb KQbW7OINEYfukiaRY8soZmyAtGQucKXKE8mCi593XQ8WzcES8Y ICgBSglIj8FRdUDWvYAXt8TUM+xVGIbF7wFELTBFvq+7KG/Syai5uFDdtLMF9JJKCcsakciZCCfZlNqBx802aIGJdZOUnGyuf J7KtYmuAbcQDQmLPfoR2s3uW391TF67A6cTN5j3SLQuBxMgznc NrIToydg5t2Vb0Ls03Qn/Ef+tqJq231AFtTGNu2BglHDmhHhDqeiRtA+ZmH7oPwau7X+jP1 kH860bS6tsCmw2PUTSkpIL5P2bHkeNhUm0NpRmKQdPVGGsbjkf RojDjv8v1U/vqbHDvb/Ub4GpbV9unMA0G1Ysq3e2g4gjl2ioI9qwb5jvY7GNRqwHBn6/XVhgPo0+ovwFREd/9cX93+tNLsHZcXGysBIhuCNGB5euu7KPeIv8ALX+kU+TCRniin 1qKB2Rs+EwRExJfdrc5RfwRzqNLAIxA7/EfRcf0n8KNqnxmzYhLDZF1ZgfsMfwow7Mi8n+Y/nR20BzZotvR1St99m/GltM23bdUqj7Ryf3UHgtmx55gQdHFum3kJ20trbOQRFhm0ZT4b cmU9dZWWbf98yC5oTCi0kvayn+VR+FN+a4/T/iP+qhYdnJvZBd9Ap+kfnf0uysUo66+gC9sLeGS3ELmHrXpD7wK Kja4BHMXoKTZMdjrJw86/wCqodn7ORoka8mqj9q/UPSp4bb+hJPwxP14v6Gt/eKftdbwS/Ua3rsSKCxWzVEkRDSeEVPfH4FSevrUUTLstSpGaXUW+kb86nS6 1AbE9wD1gH360JCMs7jk6h/avQP3ZKF2Zs9GijJMl8ov31+I0I8LrFM2ls1FUSDP3s3a7ubrw bnyHS/dFLK9gWmLhDoyHgylfeLU3Z0xeJGPhFRm9fA/feohsyLyb+sk/E0Ls/Z8N5E3a3R+Yvo1mB9WpH7pqLKwLe9Khvm+HzUf2B+VcrHQAOM2 ZG0ka5RxMjanULoBx8oqfZRPzPB5pfdQsOAV5pCWkstkHfG42z twPpKLdlEy7PjVSxMlgCT31+WvlVsctld/vzIB9nbMgJkbdRm8hA6A0tZLDTrU0/auCjCBVjQF3VRZRzYX5eSGpuzdlLukzF8xUMe+ONT0j43WaZiN mpvYlDSeM574/IZRz9KpunLcFqMMnkL9kUAuFjadrohCIB4I4sSx5dQX31P839U ko/fJ+NB7PwObeNvZReRh4Q1y2S/D0awW25JYNs+HzUf2F/Kg9kYCIxBjFGc5Z/AHBmLDl1EUsdhCkbtvpuipPhLyH1adhdllUVd9MLKBa68gB5NT y3AzaGBivEojQZpV8QcFu/V6NHDBR+bT7I/Kq/EYM76Jd9L47a5NLADyPSo0YR/PSe0R/oo9lqAfA4SMvN0EI3lh0RyROzrvTdsbOh3Mh3Ud8hAOQXGluqm 7Ow8tnIlGsj8UB4MVvoR1UtqRT7pryREaD6NgeI9Op/luQErsmEcEy/VJX4GoJMCu+QBpBZHPhnrjHO/b7qIC4jrhPsYfiaFLT78dGIkRnxmA1ZfR7KhX6khPyJhwnlHry Efel6E2Vh5THcTkdN/EU+O3qowSYjzcX8Rv0UHsiaYR/RKek/7T029GmtuXoDm1IJQgvNfpoPo1Hjr20YMLNznPsRPxBoTaeIlK qDAfpE4OvlCjPlcn/Lv7Gj/VR3stvQAkOEffSAzyeAnARi/0nodlSYvAHdveaY9E8SvUepajixjCeTvEvgJp0L8ZNfDqXGY8m N+8zDonkvUepqy8V18ugFgMDeNO+y+AvjDqHZTGwXfwN5J9GfG 18JeynYHaFo071L4C+J2Co2x436ndy/RsPAN/CSniu/wA35F/iS/bobZmC70o3kml10bySV/Cp/nH/Cm+waE2btCysN1Ke+PwX02PX21CUrf4DuPwdmiO8k+kt4XC6uO r/d6M+Qf4sv2v9KC2jjSQp3M2kiHVR5QHldtF/L28xN7k/XRqVl+ACR4E7+Qb2UXRG8Icbup5eitc2rgDuZDvpjZGNiV5Any accY2+vuJdY7fs+TfX9L76mxOJdkYfJ5bFSOMfMfXqbyuvwQOT BMQDv5tfqfooWPBNv3G/l1RSD0LnVwfE5ae+pcDj3MaHcSG6jXNHroPTqKfFOJo23Di6sn hJr4LDxvRaizXa+wC/kDefm96fooPZWCYxjv0wsWWwK+KzL5PZRgxcv8Ay7/bj/VQeAxUgaVRA30ma2dNMyq3X13PtqE5W/wk7tTBlYy29mOQhvCHIgnxeq9GjA/4sv2v9KGx0srxuu4PSQjw15gjrp+FxsrIrbi91BvvF1uL08Vv8 BFgcFlaRM8llbMvS5MM39WajHwCkEFpCDoem350GuIl3zd54ou m8HW+tFfKJvMj+IPyqJXBBs3CAxr0pNLr4beKSvX2UyTBKs66v Z0I8NuKm4HHqLe6m7NnlAkAhBtI37QaXOa3D0qW0J5eg5hIyOD o68+gR7mNTZ5rAO+bk63/AIjfnXK4MVL5hvtp+qlWOoA9m40hSTDKczs1wFIILG3Br8LcqW 1toKYmUpKM9k1jbxiAdQLcCauQKDxpvJCvpFj6lU/iVomm9gNG1I/T/hv+mhPnFDPfpkLHYWjc6s31fRq5oTDG8sp6sq+4Zv7/AL6lOPT1/AGNtIcRFMR9S39RFDbLxbCJLQSm4zXvHrm6R4v20btV7QyEccj fCp4UsoHUAPcKi6tsCq2pinZMpglGZlXjHr0hceH1A0X8vbnBN 7kPweljtZIR6ZY+xWHxIo2jatsCmfH9/QmOUWjfTISdTF1X6jRZ2onMSD1xP+mnW/4j1RfFv9KJmayk9QJqXbTQgq9mbTiEYJexJZtQRxYtzHbTsdtO FkAEqG7oPCHlr20XspbQxD0F+AqPa6gqgsDeVP6gfwppmJCo51 PBlPqINDIb4huyNfvZvyFSHARHjFH9gflQMOzojNJ0FACpa2lv C6qhW1BF3YbWfDYfeR2zGRF1UvoTrZQRdrXAubXIvQncRtkSYR WmkiD7yUHL0BpLIL5WNxw/2Kf3RbPjG4tmBM6aZmI0ueBNqAwGzRu1sBrc+8kk+81yMfxHut S1rpr7m+nSU1uAzd1csm0Uw67swjErGCEYk2i3l96Gy5r8rWsD zr0ECvPJ8D/xWHAJW+MGq6Ef8K/WLVtfm9vPze9f0VbwVft6XaPS5rqRUZWR2Mf8Q/8AlJ/VLRGKHQb6p+FVkOB7/J32U2RBfNbiZDyH+70TJsxSD0pTp51vwNXbK+rMCXZn0MX+Wv8 ASKZL/wDYT/Lf4pQuytnoYYic+san6R7eCOWalNs6PfR9E6q/jN6PbSyzP5gtqE2b+1HVK332P40jsyPqPsdvzoLAbPUtNrILSW 0kfyUPX21EUrMBu1foj2FT7mU0ZVRtXAgQud5LoL+GSNPXRXyA +em+0P00aVgdna08fakg++M/hRlqpcZgSJIjvpblivFb2Kk6dHsFGfN7efm96/oo0tNQVG1do7jZkkoNmSFlU3tZhdF1PCzW1rIdyW3JjJnkWVkb K65nDG4ZkcjM+mj6iw0VNONarH7JV4CrySMpeRCpykEF2BB6PV WV7mlCNLCxJMDggniV8BmP/TaNj665/Eq06EVVp6m6lGMrpkHd1tGXEYpIo0YK0WVVkbKuYsekbZ0JuQo 0JBINb/ubxO8AYG4aGMnrzDOrA34EMpB7b1n+6yBN0BmAlW8kY5nJq5A6 gNfdRPc7h2eeRlkdI5Yo5kCldC5feLYg6ZgG9cjVV4bjpV5eNW uvVGVaCS8JsiNKE2N9BH2IB7tKZ8gbz83vT9FC7IwjGFCJ5Rdb +Jz15pXasrFcLnOWdDydSn7w6Y+7P7qOqn2jhHG77+5O8W11Tj rfgo5Xoo4Wbz59sa0aVtwdwOkk49MH3xoPwNO2tHeGQDjkNvWB cUDh4ZhNLaVb2Qm8fHRhyYdVS44zrG7F4SApJ72w5H/EqbeJagsYZAyhhwIB9+tcoDCQYhY0W8WigeC3IAeVXKjKgTtsx Cb3k9krj8aDGz1M9s0lljvfeN4zHt9A0Y2PI0MM3ryg/BjQeCx4LzNu5dWCjvZ4Ko/EtWSUrAOGAHlyfxG/Og9m4S+8bPJrIQOmfFATX7Joh9qAAndTWGv0Z/Ghdk4xhEl4ZSSMx6K8W6R4t1motKxA/a2FtE3Tk1svhX4sFHxow4P/ABJPtD8qrtq45yEUQy3MgIByi+W8lr5tPBFZLYfdtiGmkWVc3i slgq4eS5IQyAagiw1u1xfgwrXVqqlG89EZRTb0C+6zb/yXExpeQ2iZ7u6qCCyA5GKkXABJzWGq661p9mNv4Y5osRIUlRXU lY+DC4uMlweysZ3QbMkxTpMXtLEboBYIOOgvcg3scx524DQEdy 22jCWD6RhrToRbcuTbeqPNsfCHInNe1yefS4pTqVMqem3S3+m6 VBxjc1MEU2+ktKpsqC7R38trdFh1j31NiVxGRtYT0TyZeXrNOw MgBmckAGQi/wBVVX4g1Di9qggqgvfS54dWgrqOWpoHYGabdp3pCMgtaTXgORW hdo7UIMQeJh3y+jI3BWPJr/dVMNrhYkDycFAyjU6acB+NV2I2qXK5Iz0WuCT6xwHrrfTw85vS JrlOMd2bT5+hA1zj1xt+VBR90EAmkJewKJxFtQX6/ZWa+VYpuCqP3fxLUgmJuWzKCRblwHsrasFLW7Xma+8wLvau045 JsPkYEb0cx5Lk6X7BVfPhQ7YXoNoFO8yO4Szq1lCiys1rFmIst +s1S4jFOmIw4kNznZuiovYRyXOgrUbIxoMERHNB/vWvLcZiqOJSeui9bl3DvtIXiB7YxCx4jDsxsFxwuez5JL/pWkHdFh/LJ9Sk/CsF3QY7NPGqXzDF6aaXGGcW19dEHFYocv5PyNdTg2FdTCpxtv1 NOIqxpztI1uD2xCZJmzMblQOg/JR6PWTR/wA5g+DHK3aFt8SK8/i2jMua6qbnMbqw6h19lPO3HsRkFyLXDEfdaurLA1b6L1NKxEOp s9kYtxBEBBIe9rrdAOA63pT4qTex94bg+hdPR9Kszg+6Yoqr3w AADkRoLddTN3SgyI2ciysNUOl7dnZWt4erF6wM+0g+Zq/lUvmD/EWhMHiJQ83eb98B8NdOglUUndSPLc+pSPiBQMe3bFyRISzE8R2 Ac+oVEcNVadofUOpDqana2OfcyBoWHQPjp1fWvUq7cQaMkg/dDD+Umsbidr51ZRG2otckU/52k5Q/ef01n3Sq17Jj20FzNNi9twGSLpGylmN0YeLl5j0qLTbsLeC2b1 W/OsWcViC2YRqNCNbnjY9Y6hTJY538JYx25VBHtuSKy7lJ2vp8yH iIGjfGB0sAQN5Ide12tWadcm0R1TxZSPYyH2/R1AcM6rbekgeKHPPU6CqLH4gQz4eXhZ8pPDiVbU9VlP31W4hw/wD805Zk7GdDEJ1Erbm9XZIlZJzLIcygPGchW26eIqpyZxqzMel xJ7LZ/ZG02gSBiTeOSTDtbU2e0oPsZCPbVrsHamZCvAqxPG+jEtzAIsS y8PEuNLVkNsY8RTYhLouV1mXOQAxs0ttWUBdVUnW2cV5TB1X28 VLlbyOhKn4GbOfuqJVgDJextoONvXUuG7plVVXeEZQALoeWnVT IsMzKCIDYgHUxjjrqC1QNghmyGHW2bR4+HDTp248u0dde47HDN W18zj9pW/qGN3RBpI7yIQl3101tlA9zMfZVxD3RIeOU+phWXfZq843H3/AmoRgoD5WhtwOh9oqHhKL9mT9Ce3mt4mpwe2EzzNYm7gDUcFVR 8b1FtXbYICWUZ2AN25DpG/sH31m/myDmffYfEVLHsuHkL+o/lU9zhe+Z+QeJt/E1eG27EVBMsd9fiaVVGFwKBR0f93pVpeHp33foO8vobCg9lDvd/Kdm97H8LVBtCFkjeTfy9FS1uhy1A8C9LCbKZUVd/L0QBoU6vqVUsrblsn2ue9OBxYBPtEL+NFqLaVUY3BnPEm9lOZ7 npDgoLdXXlov5C3KeX25CPvWllbcHMWmaaMEaBXP9K/BjWJ7q9iNFM2JhUucoWWInSaMdXVItyQedrHiCNZlnWYgMj2jH EFDqx5gkcuqgdsYvpDOhU2tcEOPeuo9oFY1KSqRyvVNExk07oD 2LOropDZlZc0b+Wvb1OvAjr9tBYzCyHPiljUSwuyPGpzLLFYGz G2pynq5W5Cq8YpMPOVVwIZyHBBuIZySA4A8FX4MOZPpE1qMPtB ShKgKSemBrZ9AdeegFjzFjXksRgnhKjzLfVfD99S3GbqbGUw+L hiAVDJu3u8GUnTXpRNc5bpyuNVtxsTREbTyjwiqdegJHrAufZa qPujtDJazCCV891GsbrqMhAOX3G4sNBer3YGIxGIjW0RJu6lzl UHIcpcIW0J0Nr6E163g+MhUp2nq1zfT7lHGUpxfh2J4NmRoNRf 18KJhcMcsYLG1wEF9Ou/C3rNXGH2Ow1MaMeuRy38gUKKIwuGmMkhMqrbKnQj5AZtMxNtWr ozxd7lWOF/syuj2VOfEVfrOL/wAt/jXcDsmWRc2dFBJHgluBK34jja/tq4nwjBWYzy6AnxRwF+S03BbLG7QF5fBH7Qjl2VoeIk+foblh4 LkYjuy7mJc0ToWkOYIQqqujAjxyR4QT/d6t8BsfFrEgZFzBdbya353str+qrzaGzlsnSk1kUfSv136+yih s0cpJR/1GPxNc/FYWliWpVG2/Is06jprLE87XYOKfGxnIQN4XuWXKFCEkXtnPfG4dt60k2zp01M eYdaEN9xsT7AatHwb/AChQJpPo2OoVrdKPTVeyi8uIXxon9ash94LD7qs4ZLDQUYbGmt BVXeRlkkB4HhxHMescRXWQHiAfZVk2H3kk28hbMGUZ42Ulegul zYkc7WIrNYjbSq7IFeQq4jzBcgzG9lbOVKnQ3tcC3Gr/AHqnFXm7FOWGkvZ1DzhUPiL7qCaSDMVVd444rGpdh68ui/vEVXT7QDHvp3pOghiJWL1PJbNKeOii3ZV5PiZ4sJmtHCyh33ao tyqi65UJsFF8zeNlU2AJrk4jjtnloK/vd7eW5Yhw+SV6mhVY2dkBAihiaxtvXDMDyO7jDX9V6F7imlxM2 VTZTGWkaQXGYNlGRQRzuugAIAPGtTie56C7SMvHU9Iqg06hb76 qPnKHAXlgjBXwXVFOUqToS4BACk3vroW9Y5NDjlarWSqN78lZf ku9zpKHhRql7njzmP7qAfEmmbP2IrA55JMysUNioBseIsulxY2 qDuc7pZMWZUVY1aIi5uxBDA5SBYEHRgQbHS9rEE2GCinLSjeRr 0+UZPFE4XfSvQxrzlG+Yq9jBaWBdpbBiWMuDKcpDHvjaqCMw0P k39woxe5zC8d0G7WYn7yaIkwDsCGnexFjZUA/pNQbOwYeJCZJTpY9MjUdE+DbmKh1JNe0ZKKXIgbY0Ecq95TJJ0 bEXswBKkesXB9S0P3RdyMOIQKAkVje6oPUR7VLKew1YbS2au6a 2YsozLd2Oq9IDU87W9tTxbNgYBt0huL6qDx9dYSeZasyWjujOb J7loYWeISMLkOCuRc19LEBeRFvURUh7hIGl3jySyAkEoSuVsvA Gy3tw0B1sKttpbOhXJIIo7K4B6C2Kt0TfTkSD7KL+aoPMx/YH5Vo7vRTzKOpm6knzB9m4SOxRo0LRnKTkGo4q3DW629t6ftDZ yFLpGmZTnXogXI8XhwOo9tQPs+JZ1sgAdCNLjpKQRw7C3uo5tn p6Y9Ujj+6t7et7mBzDQxOisESzAEdEcDrQWKwMSSK5ijyv0Gug sDrlbh619o6q5s3AKM6Z5RkcgWkbwTZl0v1G3sojFbJzoy72XU adK9jyPDkbGp0T3B19jYc8YY/siq6DYOHztE0SnTOhN72NwVJv4pHuIo7A4YvGrNJLcgXGfgeY0 HI3qHH7OVSkmeTotla8jeC2h59eU+ypU2tMzIaRIO57DjghA6g 7W+NKixgE65P4j/qpVHay/sxZdCHasoKBQw6TovH0hf7r1YCsTtHamHZGAXDhuIIUE3BuOHa PvqB9q4cgEALzsiMpHtUVn2M2tE/IjMupr8Y4WaEnQHOv3Bv7TXZ9pxrwOY9n51gcVtFDYo0xIa+pu OYPhm/AmpExmIfRVCjyiLH3EkD762LB1Glp56GDrQXMutqbbyyBmOQMh GmpNiCB18zVNLjppr7sFV5m/SP73L2X9lOwWzM5uA0z31tqvtY6D1Eirt9juqM7sEVVJypqx0v a50HuNWIwo0bX1f7yNLnUn7K0MVisJZSJF6J0N+d+s86AwuPki kCvclR0nLHpRXUKWXXMwAPAA31PGx9YwOxYlVSyK72F2cZjfna/gjjoLViO7vaqwYpEVTHuk3sbCHOC7ZlJZjGwC2GUar0jrwrn8V qUsVTSlHbmWcJCVJ3vcOGyExKWlcolwRlUmUkcDaxyD1gkg20q 62TuYXZIkkyqgsBHISWZmZmYkcTZdedE7C2/HNh45GdFcp01LAFWGji3UGBqg2H3ZCXFKmRQuIYqpznMMquy3G WxzKA2h0zgcap4enQw8cseZvnOc3qawY88oZj+6B/UwoTZ2Mks7CBzmkY+FGOByeX6NXAoPYw7ynaM32iW/GraatsagbH4qUxSDcOLow8NOo+lU0OOYKLwS8BwyHl2PUm2mtB J2oR7+iPjRaiwt1UurbAqcdtFbx3WVe+A6xv1NzCkGjBtGPyre sEfEVm/wD8mYh0gh3YZn+Ux9BJDGzjpDKHDLa5tzH4UN3CbdVcIBMZ8+9 l0dZJWA3jWXOM1wOA1Olq0zr04NRlpp1RkoN6o0S7RiM996lhH bwhxzGrAYlDwdT+8K8q7u8XJJiWaBJyrQRoHVni3bbxjfKWXNe 6A6HT3V6k+BiPGND60B/CphWhUvl5fAOLjuRYJunOePfBw7I4q8w27saWTFzEXWOc583Be AVlJHSJsoJTg19eBr0TB7LhLzd7UWk0sMtu9xnlaodvbFVoJMj yKyqWQ52YKwBsQCT6vbWOKpdpBqL15GVOWWVyl2Zg4cOM2l+bt 4WvIAcBpwHVT9q7UhyjfCMIDmG8QSSE8mSLXL9ZuHVWG2ViJ5J F3MYDutmcEaAEkuSbnUkjP4RGUWFr1dT9xcqqZnJmsMxDCy9dw CTmPpNc+quLg+GTq1Fmlb3s316iSu9+gzG91W8a0MRc3HTk6dr njc2iT2XPZTZ9i4vEkxyyoMy8Ok4sxItYFV6+RqywuzFy6kk8L DS3ZbjSw2Jlwr34rYKGIvlHS5c+PDSvQx4Dh6avHxP3/wDChHHybtaxr+5fYKYOLdrqWbOxAAFyANAOAAAFFJiUSSXM6rq p1IHigfhVfgJYZgC8jPfym6B9SrYD1EUZgsJGs0mVEAypwUDyu r2UUVFWNl76hA2lFycH6t2+F6B2ZtABWASRrSScI24F2I1IA59 dXAFB7M/aj/Fb77H8aJqwGvipDp8nex62jHwY0NsnFS7mMCEmyhb515afhVwa B2J9CPrP/W1SmrbAF2riJWhkG4bwG1zppobHjRMWOkIB+Tyai+jR/rozEC6sOsH4VHgT3tPqD4CmZW2+v3BXY/GMDGxhlGWQeRzultH9KjPlzeYl/k/XXNsA7lyOKjOPWvSHwotHuL9etQ2rbAqVxrCYjcSdJAbd7B6JI J8P0hRRxkn/AC8n2o/10sbpLC3WWjP7ylvigo69G10BTbOxMoMibk9FydXXQN0h18y3u qfFiaRGQxLZgR9J189F/wB2qQ9HEDqeO3tQ/k591HVLet0gVGDx0zICyxhho3TPEEqfF6wa7XcVsKN3LlnBOpA aw91dqbxIModmx3Oh49Zpy4GMeIPjRUnE+uuV2M8rbnIe5GsSj goHqAorZ8MTdKZrrchYxclrGxLKtyRfS3v7IahaWWIFoDYsbsL aN29h7dK11IykrJ6m2lKMZXkXOzNqRxxDoSaktYRm2rE2A6hw9 lR7U28jR23ctiy3OS2mdSefVes7DiMSBYIvEnUHmSfK7a7K2Jd SpCAEW4f+xqt3Oea7t5lvvEOpq/8A5Gnmpvsj86xeOPyyVOibYo71r8RAukQPUGALW5FqdtBsTlVC 4vK6xCwF+mcpN+wXPsqVWO8xEsTxxhZY8KjPooCkBwDYgE2AFx a57a4HGoyhlpRer1/4vv8AIuYWaleSLLF4MJHZVHJEXlc6KB2fgKz2xcFCm0gUiFsOn SyKoux0Bbhck5jfj0DWn2fi96kcjG+RGkc3BBILIpDAAMpyuQb C4sbCsf3MxPLvZw7KZXvccwC1vZcs379c/gWDq1K7UnpFa/Q2YnEKMLs9M+el83J74/10JsvbIESDdvoMvFORI8vsrM/I5eUze0n86amGnXRZdLk+/U8R1mvYdz00a9Tnd6j0Zptq7aBjI3T8VJ1TgGUng3ZRXz8vmpP 5P11jpI8QQQXBBFuXP2U/f4ockPs/9qh4OVrK3mSsTAO7pcVv5MMAjqN+nhW5ZjyY9VFbPwXe19vxNU seMkbEYdJFVe+htL38F+2idu4N3jgsHMQ3ucLHvekR3u8fMXzC/K/FdCPKcdws3XhBu2nx6l7D1llbiP2/h8kcrnxIw+nouD+FaT/5BF5Mv8NqoNvqVwUuYZWGE1F72IGovz153oA4zE+Qv2T+qrP/AM/hZSpTXR9bGvE1opq5o8Lt+ISTXElmKt9G3khddPRpbQ2zDIFAZ xY63jf4W1rMx4jEgsciksRyPIW8qn/L8T5tfcf1V6J4Kd/yVu8w6lz3P4zBwp0QFYsxJ3ZubsdSbcbWo/aO2sO8TqJRci1jcHXTmKycGKxCqFEa6C3gt+quTS4hxlKLa4Oq 9RBtq3ZRYGV+Xmg8TDqa/bGADLvY7FwNbHRwOR7eo+yqMgMOsEe+gsLFMD4QjU3zLHcZgeI IuQPZR4Fb6VOUFZsq15xk7xKx8K8RLxHQ6leIPrHP18atNhbd6 TDgSR0CeQAHRPPnSoTF4BX7D1isqtOFReLfqRTrOHwNcm2YTpm 6XNQCzD91QTUGBxxzS5IpGvJ1BfFTyyDWTweNaAhXFlHB1FvtW +NaXYG0wynMfDdmDcjrYerQCufUoulutC/CakrosxiJTrurfWcfhesz3Pd1O8YYdVVTchGdjlkPhMEsvLMON r8RcU7uj27mRwjlIVOV5V8N24bnD8yxOhccOA1uVz3cls5sNNv ZkyxAndRDpPECAAzNxfKCwCDwc7WvwHKnxClCfZ3W+v2LEaTcb noTriCD0oRp5LH+4VDgYZzGnfkHRHCLsHp0zandDh4RGXk0l0X KC2nNzlvlQc2OgvRmyGvDGQb9AfCr2a+xqGnCSkWM5100jUfG9 C7LwjmJLzyCy20CctPJ7KuKC2N9F6nce52FSm7AD2pgiEzGaU5 GVtSugBFzovUTRh2aOck38Qj4VPjYwyMp8ZSPeLVDhNoI0aMXU EqCbsBrbWl20APH7OVd22aU2cA3lfg108rrK+6i/mqI8Qx9bufi1C7Y2hEYXtIhYDMBmB1XpD4UT87Q8mJ+qjN8BU+ KwO/NMPmx9/512kNpL5Mv8GT9NKl5dWDPx7Pne53YUXNszWJ7bW0HrpuKwE0a lmRbDqfUk6AAW1JOlaE4x/MSe9P10F8reSW+5kyxaWunh21J6Xig6drHqqwsRU9xo7vTK4bL xHmx9sflUUuDmVlXd3LXsA45aknqHD3itGMa3mJf5P10Fhcdmk eQxS+bWy30Hhc9DmJH7oosRU6Id3gVp2ZP5r+dai+SzZ8m6ObL mPSXQXsOfWD7q0Y2kPNzfw2/ChMDtBC0khWXpNYd5kOidG2innmPtqe81OiI7vAy20EePEQmRM ojSWYXINyqhOAPLeUd3IgDCpcDpkub87nQn2WrJd13dC0s2IAb VSYI4yuU7slC5a/SDEq9tPBCmtVhZBHGq8kQD2KAPwryXF68p1rv4en3Z08PRUaeV A/dftHJhcVbi2WFe24FwPtMKl2NsWeOFEEJ0UeMnVpz6qzGOxZnk wcTKQs2K3pC3dsqjeFWULcFRYMNbE2r1MbSTyZf4Mn6a6vB3Kl SbS3f0K2Jpxm0mZ2fBzIpZorAemt+oAAcSTUw2TiPIT7f+lWW0 Mejbtcsv0in6J/F6fk9aj3UX85p5Mv8GT9Ndd4ipbYq93pmenwEy5boOkwUWccT7 OynHZ2I817nX86ssVtKMzRA5wFDObxSXvoo0y+k1F/O0PlN9h/007xUXInu9MxG0oJI8Thy6FbuOYPAHqPbV7szE96X2/E1Qf8A5G2ou8wrKzlVc5xGCHsQ1gCVNrso1qPYe0lMI6ZOrC5B B0JBuLdd683xx1KtSLtyXL4l7C04xjYP7q8ReGcdeHarAbPnJ+ hI9bL+BNYnur2sl3VnfKYCCUucupJzgDW47RxFeoYLase7TPKm bKM12HGwv996scFlUpQlpvbka8VSjNq5TYbZsz30QWYqbtzHqF EHYkvXH7z+VHbO2hF3zvqayMfCHZRMm0obHvsfDyh+ddt16t/wVewplJhNkyuiveMZlDWueYv1U6XY8wBPQNhfwj+mrDZe04RDE DKgIjUWzDyRRL7ThII3qcPKFO3q3/BPYUzPLgZyoYRXBAIyuvPXmRQ8uZPDR0ubaqbX6swuPvrQbL2n DuYryp9GvjDyRTdrbQhMTWlS62dekL3UhgB67W9tZrEzvZoweH gUCyg8CD7adWlkXDTDpbp/XlJHqPEVW7T2QFCGJiMzhbMS663trxGtudbI4qLdpKxqlhWtmV bLcWIuKpmiUNId60eGT6ci92bS0MXPOeBI11AGp05tnaro7Qhc oU5ZJgwKx8blR4TEWIJtZSRfg1j+57Bh8krJlij/APrxnt4zyDm7G5F9Rcni1crinFI04OnTe+/71LGFwkk88giCJFZJMU0cR0XDwEgLCCcq2HAytoLjhwHWbLHoq gsfhqSeAA5k1PjkDPHI7ARxZnI11ewCHTjYF9OsrbUVRd0G1t2 VA+ncdBLZhAhsDLIBxe3Ac9RwzE+Q7pPE1Iqndt8v31OiqmRXZ Q4vZ0suLEcKkyuVEwveGGLWzSHhvOkxCg9K9iCNa3nc9sdFw8a K8oVQVAEhGgYjgtgPZQncziIYYsq9IElnkvd3Y8WkPM/AAAAAVfbHtuUsb6X9p1Pxr1uGw/d6eV76XK855nc4NmJ5Ux/60n6qE2bsuIq1wTaRxq7Hx27auKE2Zwf/ADX+NWFJ23MDg2TB5mP2qD8aH2Ng4whG7QFXddFHJiBy6rVZu4 HEgeuq3Z2KjAcl0F5XOrDyrfhS7aYD3hUgiwsRbh10Psd80ERP HIAfWBY/CnNtGHzsf2h+dB7L2hCqFTLHo726Q4Zmtz6qZXYFtSoT5zh87H 9sfnSrHLIXCJpAqljwAJPqGtQbLjIiW4sW6ZHa3SPxqv2qJyoj JiIkYJwa9uJvr5Ia9GD5R/g/zVlbQE+NnyRs9r5QSB1nkPfXMBBkjRL3IUXPWeJPtNzVftBp+g hEXTcDi3K7nl1KaMzYjyYvtN+mltAS46fIjP5KkjtPIe+1LBQ5 I0XmFAJ6zbU+061W7QadjHGVi6TZjZ24J09ehwuFHtozeYjzcX 8Rv/HS2gKnbHc3hnZWePM7ui3JOoVs+oGjaBuPXReJ7m8O6soTLcW6 LMo19FSBXJpJmmjG7juoZ7bw9WQeJ6Rozez+aj/in/x1jKlFrVInMzL7H7i4sLjIZBI7kLJlDahQQoJFyddQLi1+dbaq feTGe+6jukfDenx243yehRW/n8zH/FP/AI6lQypJEN3FizeaFfrt7gF/vo2qbfTHEX3SXSPhvfLbjfJ6FF/KJ/Mr/F/9alxf6yDq64gnqiA97N+VG1UwzTb1zuh4Kj6Qekertor5TL5n+ daOJILNgVlxD5xcCNNPa5q1jQKLAAAchwqowuJk3sp3Jv0R4a6 dG/40Z8qk8w32k/OplF3BBhsIjTTMygkOBrr+zjqyyjqFVGCxMmea0J+kHjrp3uPt oz5RL5n/ALgqJRd/3oBmzYx3zQfSty9VGGJeoe6qrZ2Ik753knvjeOvZRfyuTzDfaT 86STuQLYqj5PDoPo1/pFG5RVNsjGSCCIbhzZFFwydQ9KjBjn8xJ70/VUyTuSc2J9BF9QD3C1S7QjBjcW4o3wNV+x8WwhQbmQ2uLjLyJH lUa2NvoYpfsj8DRp5iBYeCN40YopuoOqg8QD1UFt3AxLEWES3U q3RAB0ZSdRrwvTtkY/vMY3cuiBfAJ4DL+FP2liw0UgySaqf2bdXqqUmpEnn57l5YpDKS ThyzO+ty7MxcbwHVVv4RB6XRzaCtAMYFBZjYDn/vj6q0/wAtQjVZNR5pz/bXn/dlDlcHDhwgBugRhYtpbVbqtjbTwb6WFcPHcMnUlnh80WqVb+LC Mf3QiyugDk33CXtnYaGVzxVF6+PtIqPZGzct5JTnlkOZ2I4k87 dg0A5AAVb7D2RhEiO/aIzSdKRs1ip1OVGNjpc9LixJJ6hzGIItd4rxk2Dgi4vycD4j7q 7XCcLDDw1XifP3dEc/GZp7bFXitmnUxHKSCCBwI6v/AO1NhduupC2EbcCSTk9ot8ffRgNQYnCK41Ht5/612JwhUVpr5lKFWUC7gxjt9JKw/wAtQB99z99TbIwEbx5iWfMzHWRiNXa2l7cLcqxvfoPBOZOo6r+ a+yrHY211VVXMUYADXgfUeBqlVw1SCutV7i7TrRl8TZrs6Ifso/sD8qG2Ph03fgL4b8h5bUzC7X5OPaOHuqbYsgMSkEakn3sTVS7s bgzdL5I9woTAIM0osNJOrrVG/GjC4HE2oDDyqJpukNQjcR1Mv9o+6oV7MFhux1D3Vylvl6x7xXK gArHNOo8hC3qLHKPuVvfRtUW3cc8boqdHORmcAHnl5q2gvyB1Y XyqGYdxW1XWGN80Su7EAPe0pF7LGLi2ZQXzXbKoJswuaMB0vSx CDyELe1uiPuz0dWZbbMmcKu5UyOyB2UkRBN59LZxnzZDbVLZ+f ObYu15ZpQGCKjwrIFC9JWYKWQvvDqt9SyJfMtr2NAWmhxH1I/62/wDT76MrM7K28TBFNIqkzDOd2oXIoVTZru2e2bTgbEdEUc23UBa 6tZWZORuVzi1r3FzGwBOhsOsUYCsLrPK3khEHszOf6xR1Z+fbw U3VLKJGWQEAsQqTaizdE5obdIajh2SR90cZcKVZejmJNrCxmW3 G5HeX6Q0N166MB+E1mmP1F9wLf3UbWW/+WIYpZI4ZAy3+kQxqWAa+rAZrZDoNSMvWKsMFtxHlEVjmJlANt O9yPHY6kA2S/HXjYcj1AXhh3+Y9iL7gx/uo6szPt9opcTmRTHCGNlAEjZIVlPSL9Im+UAqo9LkS5dsMsiq0 eVbneEkd7AjeQEkNrfL7KN3AfhGvLN2FR/KD+NGVmou6uIxvKI3yhXYmwDFoxKWSxsQbQtqbDQUQe6JLjonm pGgsytMj3ctaw3LW69NdaPUB+BHfZz6aj/tofxo6q7Z+0Y5XlVdCj5WuLBjbQg+NoOXVVfhO6ZWzqyMGW/C2Vrbm9tbi2/j1PpchUvUFpgPDn/zR/wDrio2h8LKGXMtgWGYi4OvDUgkHhx7Kj7//AIX81Q9Qc2Xwc9cr/wBRFG1U7KM2Q23f0j+V5bUXefqi97flWUo2bAzYn0EfYtvdpR9 VGyjNuwAI7BmHhNydh5NGZpvJj+036aSWrAzZI72R1PIP52oy1 VWymlytZY/pJPHI8dvQo3PN5Ef8Rv8Ax0mvEwR7I+jI8mSQe6RqJxC3Vh2H4 VWbLeXK9kj+lk4yHyz6FGF5vNx/xG/8dJR8QHbOfNFG3Win3gV3G4cPG6+UpW/PUGgNkSzblAI4zYZfpCPBJXyOyijNP5lD/wBX/wBKZXf/AAEmBfPGjEeEoJv6qF2zgozGSY0OUq2qjgGBI4cLXFRbLmlWML ub5Sy6OvJmHO3VT9oYmQxSLuH1Rh4SHiD6VSk1LT6gFxuwQusF l/w+Cn6vkfD1caqAdSCCGHFSLEeutNDtElVJhl1AOgB+DVWbdeN1 DlJlKEEsI2BC8G1ANwAb2OmlWaNaSdpFepQjLVblbQk+zkblY9 n5UTiLxmxzOvJhG4P7yldPWL+ykkgPA3q9CpziylKEo7lZ8kmj +jc26uX2Tp7qjwePKWWTeaaXVivvQW+Jq6qOWBW8IA/766lqE1aS+a0ZlGtOOzDdnY3DMPoon/dGb2hhejsFFh3mktHHYKigFFGvSY6W9IVk59kc0Nj2/geNRR4qaEnMMwJuc3Pl4fsHXVeWCbu6cr+57lmGKT9pWPRBs2H zUf2F/KlVBs7uiXdrdJL69R5nnelVN4equTN3aw6mmkhVhZlDDqIBH30 pYFbwlB9YB+NcpVoNhxsOpvdRrx0GtuF+uniMXvYXPE8z7a5So DiYdRoFUc9AKjnwSOQWW+Vg4FyAWHBmUaORYEZr2KqRqAa7SoC TdjqHXw7LX92lRrgow+cKA2UJf0VLEKOoDM3vpUqAd8nS1sq20 0sOWg91OEK3vYX67a66nX10qVAcEC3Jyi5FibC5HUeunGMdVKl QHFgUCwUAdVhb3e0+80jEvUON+HO97+/WlSoCM4RCwfKMykkHqJFi31rXF+NiRwJvJuV6h1cBztf4D3Vyl QDlQDgOynGlSoAPZH0f77/1tRhpUqmftMAWx/Ab/Mk/rajqVKpnuwBbL4P/AJr/ANRoylSqJ7sAWzOEn+a/9VG0qVJe0wB7I8BuyWQf9x6NpUqS3AHs79p2St+B/GiXGh9VKlR7gF2R9BF9RfhRGIjDKyngVIPtFKlUy9pgh2Y5aGN jxKKT7hQm3dnxtG75bOq3DjRvfzHYaVKpi2p6dSHqiigi6ciEk hDYHS59elqI+TDrNKlXQzMoSiri+SjrNcOFHbSpUzMxsiWDZ0Y UdGlSpVg5yvuZ5I9D/9k=[/IMG]
MMath is offline  
May 26th, 2016, 07:46 AM   #4
Senior Member
 
Joined: Dec 2012
From: Hong Kong

Posts: 853
Thanks: 311

Math Focus: Stochastic processes, statistical inference, data mining, computational linguistics
The point of the seven bridges of Konigsberg is to find a Eulerian path. A Eulerian path (resp. circuit) is defined as a path (resp. circuit) that traverses each edge in a graph once and only once.

You do know what graphs, paths and circuits are, right? If not, you should review these topics first...

Last edited by 123qwerty; May 26th, 2016 at 07:51 AM.
123qwerty is offline  
May 26th, 2016, 08:12 AM   #5
Banned Camp
 
Joined: May 2016
From: earth

Posts: 703
Thanks: 56

from where?
MMath is offline  
May 26th, 2016, 08:23 AM   #6
Senior Member
 
Joined: Dec 2012
From: Hong Kong

Posts: 853
Thanks: 311

Math Focus: Stochastic processes, statistical inference, data mining, computational linguistics
Quote:
Originally Posted by MMath View Post
from where?
Do you have a graph theory or discrete mathematics textbook?
123qwerty is offline  
May 26th, 2016, 09:07 PM   #7
Banned Camp
 
Joined: May 2016
From: earth

Posts: 703
Thanks: 56

tell i am watching online.
MMath is offline  
May 26th, 2016, 09:38 PM   #8
Senior Member
 
Joined: Dec 2012
From: Hong Kong

Posts: 853
Thanks: 311

Math Focus: Stochastic processes, statistical inference, data mining, computational linguistics
Quote:
Originally Posted by MMath View Post
tell i am watching online.
I'm not sure what you meant by that...

Edit: Oh ok, I'm guessing you wanted me to explain these concepts. Do you know about binary relations?
Thanks from MMath
123qwerty is offline  
May 27th, 2016, 12:15 AM   #9
Banned Camp
 
Joined: May 2016
From: earth

Posts: 703
Thanks: 56

ok you tell
MMath is offline  
May 27th, 2016, 12:26 AM   #10
Senior Member
 
Joined: Dec 2012
From: Hong Kong

Posts: 853
Thanks: 311

Math Focus: Stochastic processes, statistical inference, data mining, computational linguistics
Quote:
Originally Posted by MMath View Post
ok you tell
Let's say you have a set A: {a, b, c, d, e, f}. You create another set by taking two elements at a time and arranging them in a fixed order to become ordered pairs (like the ones you're used to seeing in a Cartesian plane): For example, you can have {(a, b), (c, b), (d, e), (f, c)}. These are binary relations. Get it?

Now, get a piece of paper and put the points a, b, c, d, e, f anywhere you want. Draw an arrow from a to b, c to b, etc., according to the binary relations. That's a directed graph.
Thanks from MMath

Last edited by 123qwerty; May 27th, 2016 at 12:31 AM.
123qwerty is offline  
Reply

  My Math Forum > High School Math Forum > Elementary Math

Tags
circuits, euler, paths



Thread Tools
Display Modes


Similar Threads
Thread Thread Starter Forum Replies Last Post
Hamiltonian Paths and Hamiltonian Circuits eulerrules1 Computer Science 1 December 28th, 2011 12:29 PM
Euler method/ Euler formula FalkirkMathFan Calculus 1 November 5th, 2011 01:57 AM
Euler method/ Euler formula FalkirkMathFan Real Analysis 0 November 4th, 2011 05:08 AM
Euler method/ Euler formula FalkirkMathFan Calculus 0 November 3rd, 2011 05:52 PM
Euler Phi brangelito Number Theory 18 August 10th, 2010 12:58 AM





Copyright © 2019 My Math Forum. All rights reserved.