
Differential Equations Ordinary and Partial Differential Equations Math Forum 
 LinkBack  Thread Tools  Display Modes 
May 11th, 2015, 12:04 AM  #1 
Newbie Joined: May 2015 From: Australia Posts: 1 Thanks: 0  Gradient and Hessian
Finding the gradient and Hessian of: f(x,y) = x^2+2xy+3y^2 At any stationary point determine if the Hessian is positive (semi) definite, negative (semi) definite or none of these. What can you conclude from this about optimal points for the function? I've found the partial derivatives df/dx = 2x+2y df/dy=2x+6y When setting to 0, both equation yields 0... Then I proceed by finding the gradient using the Hessian matrix. Is there something that I'm doing incorrectly? 

Tags 
gradient, hessian 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Laplacian and Hessian  Jhenrique  Linear Algebra  1  January 6th, 2014 01:05 AM 
Hessian approach  matthius  Calculus  0  February 20th, 2012 07:26 AM 
Hessian matrix  witek  Linear Algebra  0  December 22nd, 2009 08:57 AM 
Eigenvectors of Hessian Matrix  asmatic  Linear Algebra  0  July 31st, 2009 10:51 AM 
How to get the Hessian Matrix please?  ggyyree  Applied Math  0  September 28th, 2008 01:53 PM 