My Math Forum Techniques for adding the numbers from n to n

 Differential Equations Ordinary and Partial Differential Equations Math Forum

February 23rd, 2017, 07:16 PM   #11
Newbie

Joined: Feb 2017
From: Denmark

Posts: 12
Thanks: 1

Quote:
 Originally Posted by romsek $A + (A+1) + (A+2) \dots + (B-1) + B =$ $\displaystyle{\sum_{k=A}^B}~k = (B-A+1)\left(\dfrac{A+B}{2}\right)$
This is what I'm doing, and it seems to give me a close value to the actual answer, but not the right one, am I doing something wrong?
https://gyazo.com/5e568db79ea159ce7b1befbfd0fbfb94

February 23rd, 2017, 07:23 PM   #12
Newbie

Joined: Feb 2017
From: Denmark

Posts: 12
Thanks: 1

Quote:
 Originally Posted by romsek $A + (A+1) + (A+2) \dots + (B-1) + B =$ $\displaystyle{\sum_{k=A}^B}~k = (B-A+1)\left(\dfrac{A+B}{2}\right)$
Nevermind, I'm just stupid It worked
+rep ! You're a genius.

February 24th, 2017, 06:28 AM   #13
Global Moderator

Joined: Dec 2006

Posts: 21,026
Thanks: 2257

Quote:
 Originally Posted by emilo0212 Yes of course, here you have it . . .
Your example is just a summation of the first 10 natural numbers, and doesn't use its A column.

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post thomas2608 Calculus 2 November 19th, 2014 12:18 PM mathnoob2 Algebra 2 May 31st, 2013 04:53 AM TabbiSue Advanced Statistics 2 October 23rd, 2012 07:52 AM grogmachine Computer Science 10 June 20th, 2011 05:05 AM MRKhal Algebra 2 April 2nd, 2011 01:17 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top