My Math Forum How to solve this problem?

 Calculus Calculus Math Forum

 December 31st, 2014, 12:08 AM #1 Senior Member   Joined: Aug 2014 From: India Posts: 310 Thanks: 1 How to solve this problem? Proving that $\Phi_{t*}[\mathbb{Y},\mathbb{Z}]=[\Phi_{t*}\mathbb{Y},\Phi_{t*}\mathbb{Z}]$ Let $\mathbb{X},\mathbb{Y}$ be vector fields on $\mathbb{R}^n$. Let $\Phi_t$ denote the flow of $\mathbb{X}$. Define $L_{\mathbb{X}}\mathbb{Y}=[\mathbb{X},\mathbb{Y}]$. You are given that $\displaystyle L^j_{\mathbb{X}}[\mathbb{Y},\mathbb{Z}]=\sum_{k=0}^{j} \binom jk [L^k_\mathbb{X}\mathbb{Y},L^{j-k}_\mathbb{X}\mathbb{Z}]$ and that $\displaystyle \Phi_{t*}\mathbb{Y} = \sum_{j=0}^{\infty}\frac{(-t)^j}{j!}L^j_{\mathbb{X}}\mathbb{Y}$ Show that $\displaystyle \Phi_{t*}[\mathbb{Y},\mathbb{Z}]=[\Phi_{t*}\mathbb{Y},\Phi_{t*}\mathbb{Z}]$ Let $F$ be a diffeomorphism on $\mathbb{R}^n$, define $$\mathbb{X}^i(x)=\frac{\partial F^i}{\partial x^1}(F^{-1}(x)), \mathbb{Y}^i(x)=\frac{\partial F^i}{\partial x^2}(F^{-1}(x))$$ Show that $[\mathbb{X},\mathbb{Y}]=0$. \begin{align} \displaystyle \Phi_{t*}[\mathbb{Y},\mathbb{Z}] &= \sum_{j=0}^{\infty}\frac{(-t)^j}{j!}L^j_{\mathbb{X}}[\mathbb{Y},\mathbb{Z}] \\ &= \sum_{j=0}^{\infty}\frac{(-t)^j}{j!} \left(\sum_{k=0}^{j} \binom jk [L^k_\mathbb{X}\mathbb{Y},L^{j-k}_\mathbb{X}\mathbb{Z}]\right) \\ &= \sum_{l,k=0}^{\infty} \frac{(-t)^{k+l}}{(l+k)!} \binom{l+k}{k}[L^k_\mathbb{X}\mathbb{Y},L^{l}_\mathbb{X}\mathbb{Z }] \\ &= \sum_{l,k=0}^{\infty} \frac{(-t)^{k}(-t)^{l}}{l!k!} [L^k_\mathbb{X}\mathbb{Y},L^{l}_\mathbb{X}\mathbb{Z }] \\ &= [\Phi_{t*}\mathbb{Y},\Phi_{t*}\mathbb{Z}] \end{align} I cannot see how to proceed now. For the last part I assume somehow the first part has been used as I just cannot see how
 December 31st, 2014, 07:17 PM #2 Senior Member   Joined: Jul 2013 From: United Kingdom Posts: 468 Thanks: 40 Looks absolutely awesome. Unfortunately, I'm not at your level.

 Tags problem, solve

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post jon90 Linear Algebra 2 April 8th, 2014 04:37 PM Noideawhatimdoing Algebra 4 November 8th, 2013 08:07 PM Snevk Algebra 1 February 29th, 2012 09:20 AM n00biee Algebra 1 March 12th, 2010 01:48 PM n00biee Abstract Algebra 0 December 31st, 1969 04:00 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top