My Math Forum Intersection of a trig funct and polynomial

 Calculus Calculus Math Forum

 November 22nd, 2014, 07:58 AM #1 Newbie   Joined: Oct 2014 From: los angeles Posts: 6 Thanks: 0 Intersection of a trig funct and polynomial This is problem #19, section 5.1 on Stewart's 7th edition Calculus. Is asks to sketch the region enclosed by given curves and find it's area \displaystyle \begin{align*} y&=cos\pi x \end{align*} , \displaystyle \begin{align*} y&=4x^2-1 \end{align*} The integration and finding the area are easy. So is sketching the graphs (that's how i found the intersection points x=+- 1/2). But i'm having trouble solving the equation \displaystyle \begin{align*} cos\pi x&=4x^2-1 \end{align*} to find the intersection points mathematically. Any suggestions on how to solve this besides Newton's method? Last edited by fsswim11; November 22nd, 2014 at 08:09 AM.
 November 22nd, 2014, 08:30 AM #2 Math Team     Joined: Jul 2011 From: Texas Posts: 3,034 Thanks: 1621 by observation, they both have x-intercepts at x = 1/2 ... if the functions were different, you'd need an approximation method.

 Tags funct, intersection, polynomial, trig

,

### union intersection polynomial

Click on a term to search for related topics.
 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post chameleojack Calculus 1 January 11th, 2014 01:02 PM cr1pt0 Trigonometry 2 September 5th, 2013 06:11 PM annakar Applied Math 1 January 7th, 2013 03:16 PM Issler Calculus 0 March 8th, 2012 03:44 PM condemath Algebra 3 September 20th, 2011 08:34 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top