March 26th, 2019, 05:52 AM  #1 
Member Joined: Apr 2017 From: India Posts: 56 Thanks: 0  Multivariable calculus
I am unable to set the limits and reach the conclusive answer and mark the correct option. I am trying to put the the solution in cylindrical coordinates but the answer I am getting is not matching with the options. Please help with the answer and more important the steps to reach such a rigorous conclusion. 
March 26th, 2019, 09:55 AM  #2 
Senior Member Joined: Sep 2015 From: USA Posts: 2,408 Thanks: 1310 
$F=(y^2, 2xy,xz^2)$ $S = (x, y, x^2 + y^2)$ $S_x = (1,0,2x)$ $S_y = (0,1,2y)$ $dS = S_x \times S_y = (2x,2y,1)$ $\nabla \times F = (0,z^2, 0)$ $\nabla \times F \cdot dS = 2yz^2$ To do the integration we convert to cylindrical coordinates. $\nabla \times F \cdot dS =2r \sin(\theta) r^4 = 2r^5 \sin(\theta)$ $\displaystyle \int_0^{\frac \pi 2}\int_0^1 2r^5 \sin(\theta)~r ~dr~d\theta = \dfrac 2 7$ 

Tags 
calculus, multivariable 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Multivariable calculus  Limits  cargar  Calculus  3  March 21st, 2019 11:54 AM 
Multivariable (maybe) Calculus Help  akansel  Calculus  6  October 16th, 2017 08:44 AM 
Multivariable Calculus problem  maluita659  Calculus  7  February 15th, 2014 01:15 PM 
Some multivariable calculus problems  summerleei  Real Analysis  1  December 5th, 2013 05:49 AM 
Multivariable Calculus  Ecomat  Math Books  1  July 2nd, 2012 03:07 AM 