My Math Forum Euler Angles Help!

 Calculus Calculus Math Forum

 September 30th, 2018, 04:31 AM #1 Member   Joined: Oct 2015 From: Greece Posts: 81 Thanks: 6 Euler Angles Help! Take a look at this: I can't understand why: $\displaystyle x = \cos(x)$ $\displaystyle y = \sin(y)$ If I try to solve this, I end up with this: $\displaystyle \cos(θ) = \frac{x}{h} <=> x = h \cdot \cos(θ) <=> x = \cos(θ)$ $\displaystyle \sin(θ) = \frac{y}{h} <=> y = h \cdot sin(θ) <=> y = \sin(θ)$ Why is he replacing θ with x and y? He says something about: $\displaystyle x = \cos(\frac{x}{h})$ and $\displaystyle y = \sin(\frac{y}{h})$ which I don't understand, probably I'm missing something from trigonometry. We want to find the length on the x and y directions so why do we use the lengths to find the lengths? It does not make sense. Can someone help me understand it? Thank you. Last edited by skipjack; September 30th, 2018 at 08:11 AM.
 September 30th, 2018, 07:35 AM #2 Member   Joined: Oct 2015 From: Greece Posts: 81 Thanks: 6 Well, probably it was a typo...
 September 30th, 2018, 08:26 AM #3 Global Moderator   Joined: Dec 2006 Posts: 20,302 Thanks: 1971 It was apparently put together in a hurry by someone who didn't even realize that "adjacant" should be "adjacent". Thanks from babaliaris and ProofOfALifetime
 October 1st, 2018, 06:38 AM #4 Member   Joined: Oct 2015 From: Greece Posts: 81 Thanks: 6 Ok. I have one more question. He says that the final unit vector which describes the direction can be constructed as followed: $\displaystyle x = \cos(pitch) * \cos(yaw)$ $\displaystyle y = \sin(pitch)$ $\displaystyle z = \cos(pitch) * \sin(yaw)$ The above numbers construct the rotating vector for up and down on y and left and right on the xz plane (without rolling around the z axis). Also notice that y is up and down, x left right, and z is depth with the positive values coming towards you (I think it's called the right handed system). I understand the trigonometry on how to find the x, y, z for pitch and yaw, but I can't understand why you connect them by multiplication. For example from trigonometry you can see that the x value depends on the cosine of pitch and cosine of yaw, but how do you find out that you need to multiply those two values and not add them for example? I can't see that. Last edited by skipjack; October 1st, 2018 at 08:20 AM.

 Tags angles, euler

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post MMath Elementary Math 11 May 27th, 2016 01:01 AM FalkirkMathFan Real Analysis 0 November 4th, 2011 05:08 AM FalkirkMathFan Calculus 0 November 3rd, 2011 05:52 PM jrobinson3k1 Algebra 0 April 7th, 2009 07:37 AM princebilly Algebra 0 March 31st, 2009 04:45 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top