My Math Forum Evaluate limit

 Calculus Calculus Math Forum

 December 17th, 2017, 12:55 PM #1 Senior Member   Joined: Dec 2015 From: somewhere Posts: 551 Thanks: 83 Evaluate limit $\displaystyle \lim _{n\rightarrow \infty} \frac{1}{n} \sum _{z=1}^{n} z!^{\frac{1}{z^2 }}=\lim _{n\rightarrow \infty} \frac{1+\sqrt[2^2]{2!}+\sqrt[3^2]{3!}+...+\sqrt[n^2]{n!}}{n}$
 December 19th, 2017, 09:29 AM #2 Senior Member   Joined: Dec 2015 From: somewhere Posts: 551 Thanks: 83 My solution Using Cesaro-Stolz theory : $\displaystyle \sqrt[(n+1)^{2}]{(n+1)!}\rightarrow \frac{1}{n} \sum _{z=1}^{n} z!^{\frac{1}{z^2 }}$ gives $\displaystyle \lim_{n\rightarrow \infty} \sqrt[(n+1)^{2}]{(n+1)!}=\lim_{n\rightarrow \infty} \frac{1}{n} \sum _{z=1}^{n} z!^{\frac{1}{z^2 }}$ Using AM-GM : $\displaystyle 1\leq \sqrt[(n+1)^{2}]{(n+1)!}<\sqrt[n+1]{\frac{n+2}{2}}$ $\displaystyle 1\leq \lim_{n\rightarrow \infty} \sqrt[(n+1)^{2}]{(n+1)!}<\lim_{n\rightarrow \infty} \sqrt[n+1]{\frac{n+2}{2}}=1$ so $\displaystyle \; 1\leq L<1 \;$ gives $\displaystyle L=1$ $\displaystyle \lim_{n\rightarrow \infty} \frac{1}{n} \sum _{z=1}^{n} z!^{\frac{1}{z^2 }}=1$

 Tags evaluate, limit

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post quocdu89 Calculus 1 January 8th, 2015 07:43 AM Dmath Calculus 5 March 2nd, 2014 01:32 AM bt359 Calculus 2 November 23rd, 2013 09:00 AM naspek Calculus 7 December 9th, 2009 02:10 PM conjecture Calculus 1 July 24th, 2008 01:14 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top