November 9th, 2017, 02:29 AM  #1 
Senior Member Joined: Dec 2015 From: Earth Posts: 278 Thanks: 33  Limit with sequence
How to find this limit? $\displaystyle \lim _{x\rightarrow 0}x^{1}(1\prod \limits _{j=1}^{n}\sqrt[j]{\cos jx}) =$ $\displaystyle \lim _{x\rightarrow 0} \frac{1\cos x \cdot \sqrt{\cos 2x}\cdot \sqrt[3]{\cos 3x}\cdot ...\cdot \sqrt[n]{\cos nx}}{x}=\,?$ Last edited by skipjack; November 9th, 2017 at 03:34 AM. 
November 9th, 2017, 03:34 AM  #2 
Global Moderator Joined: Dec 2006 Posts: 20,004 Thanks: 1862 
What is the limit for n = 1? Can you find the limit for n = 2?

November 9th, 2017, 05:31 AM  #3 
Math Team Joined: Dec 2013 From: Colombia Posts: 7,515 Thanks: 2515 Math Focus: Mainly analysis and algebra 
I get a limit of zero using Taylor expansions. \begin{align*} \left. \begin{aligned} \cos{(x)} &= 1  x^2 + \mathcal{O}(x^2) &\implies&& \cos{(nx)} &= 1  (nx)^2 + \mathcal{O}(x^2) \\[8pt] &&&&\sqrt[n]{1 + x} &= 1 + \tfrac1nx + \mathcal{O}(x) \end{aligned} \right\} \implies \sqrt[n]{\cos{(nx)}} &= 1  \tfrac1n(nx)^2 + \mathcal{O}(x^2) \\ &= 1  nx^2 + \mathcal{O}(x^2) \end{align*} Thus the product \begin{align*} \prod_{n=1}^\infty \sqrt[n]{\cos{(nx)}} &= \prod_{n=1}^\infty \left(1  nx^2 + \mathcal{O}(x^2) \right) \\ &= \left(1  x^2 + \mathcal{O}(x^2) \right)\left(1  2x^2 + \mathcal{O}(x^2) \right)\left(1  3x^2 + \mathcal{O}(x^2) \right)\ldots \\ &= 1 + \mathcal{O}(x) & \text{(for some constant $a$)} \end{align*} by expanding the product term by term. Notice that, at this point we are assuming that the product has a finite value$^*$. We can motivate this by pointing out that for $x \lt \frac\pi2$, every term in the product is between $0$ and $1$, and thus the product must also be between $0$ and $1$. Now we can put this into the limit expression \begin{align*} \lim_{x \to 0} \frac{1  \prod_{n=1}^\infty \sqrt[n]{\cos{(nt)}}}{x} &= \lim_{x \to 0} \frac{1  \big(1 + \mathcal{O}(x)\big)}{x} \\ &= \lim_{x \to 0} \frac{ \mathcal{O}(x)}{x} \\ &= 0 \end{align*} https://www.desmos.com/calculator/b4rtdppucm $^*$ Note that the coefficient of $x^2$ is actually $\left(\sum n\right)$ over the natural numbers. I assume that this leads to use of $\sum n = \frac1{12}$. Last edited by v8archie; November 9th, 2017 at 06:19 AM. 
November 9th, 2017, 10:17 AM  #4 
Senior Member Joined: Dec 2015 From: Earth Posts: 278 Thanks: 33 
$\displaystyle \lim_{x \to 0} \frac{1  \prod_{n=1}^\infty \sqrt[n]{\cos{(nt)}}}{x}=\lim_{x \to 0} \frac{ e^{\ln \prod_{n=1}^\infty \sqrt[n]{\cos{(nt)}}}1}{x}=\lim_{x \to 0}\sum _{n=1}^{\infty}(nx)^{1}\ln cos(nt)=0$

November 9th, 2017, 10:50 AM  #5 
Math Team Joined: Dec 2013 From: Colombia Posts: 7,515 Thanks: 2515 Math Focus: Mainly analysis and algebra 
I'm not convinced at all by that second equals sign.


Tags 
limit, sequence 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
limit of sequence ?  Calculus  5  August 3rd, 2012 04:01 AM  
limit of a sequence  nappysnake  Calculus  6  November 27th, 2011 10:30 AM 
[Need help] Limit of a sequence  vasukinv  Calculus  7  April 2nd, 2011 01:21 AM 
Limit of a Sequence 2  everettjsj2  Calculus  1  February 26th, 2010 03:56 AM 
limit of a sequence  rhta  Calculus  3  October 25th, 2009 11:08 AM 