My Math Forum Calculation limit

 Calculus Calculus Math Forum

 December 7th, 2016, 11:03 PM #1 Newbie   Joined: Dec 2016 From: Việt Nam Posts: 2 Thanks: 0 Calculation limit I'm trying to figure out how to find the limit of (ln x / ln(x+1) )^xlnx , as x approaches infinity . The result is 1/e .How do I approach this? P/s : I'm not good eng, so sorry if have anything bad
 December 8th, 2016, 12:03 AM #2 Member   Joined: Apr 2015 From: USA Posts: 46 Thanks: 32 You can use the approximation that $\ln(1+x)\approx x$ when $x$ approaches zero. To figure out the limit, first take the log. As a placeholder for the limit, let \begin{align}y&=\left[\frac{\ln x}{\ln(x+1)}\right]^{x\,\ln x}\cr \ln y&=x\,\ln x\cdot\ln\left[\frac{\ln x}{\ln(x+1)}\right]\cr &=x\,\ln x\cdot\ln\left[\frac{\ln x}{\ln\left(x\{1+\frac{1}{x}\}\right)}\right]\cr &=x\,\ln x\cdot\ln\left[\frac{\ln x}{\ln x+\ln\{1+\color{red}{\frac{1}{x}}\}}\right]\cr \end{align} Since $x\to\infty$ and $\color{red}{\frac{1}{x}}$ approaches zero, we can use the approximation above. \begin{align}\ln y&\approx x\,\ln x\cdot\ln\left[\frac{\ln x}{\ln x+\color{red}{\frac{1}{x}}}\right]\cr &\approx x\,\ln x\cdot\ln\left[\frac{\ln x+\frac{1}{x}}{\ln x+\frac{1}{x}}+\frac{-\frac{1}{x}}{\ln x+\frac{1}{x}}\right]\cr &\approx x\,\ln x\cdot\ln\left[1+\frac{-\frac{1}{x}}{\ln x+\frac{1}{x}}\right]\cr \end{align} The $\frac{-\frac{1}{x}}{\ln x+\frac{1}{x}}$ also approaches zero. Use the approximation above, again. \begin{align}\ln y&\approx x\,\ln x\cdot\left[\frac{-\frac{1}{x}}{\ln x+\frac{1}{x}}\right]\qquad\text{The addition of }\frac{1}{x}\text{ is negligible compared to }\ln x\text{, so}\cr &\approx x\,\ln x\cdot\left[\frac{-\frac{1}{x}}{\ln x}\right]\cr &\approx x\,\cancel{\ln x}\cdot\left[\frac{-\frac{1}{x}}{\cancel{\ln x}}\right]\cr &\approx x\cdot\left[-\frac{1}{x}\right]\cr &\approx -1\cr y&\approx e^{-1}\cr \end{align} Thanks from SenatorArmstrong
 December 8th, 2016, 04:21 AM #3 Newbie   Joined: Dec 2016 From: Việt Nam Posts: 2 Thanks: 0 That's great. thank you very much

 Tags calculation, limit

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post evol_w10lv Calculus 2 April 25th, 2016 02:56 PM icemanfan Real Analysis 3 September 10th, 2012 12:02 PM icemanfan Calculus 2 March 9th, 2012 07:30 PM Ockonal Calculus 2 December 7th, 2011 07:04 PM Crouch Calculus 2 December 30th, 2010 02:39 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top