My Math Forum  

Go Back   My Math Forum > College Math Forum > Calculus

Calculus Calculus Math Forum


Thanks Tree1Thanks
  • 1 Post By limiTS
Reply
 
LinkBack Thread Tools Display Modes
December 7th, 2016, 11:03 PM   #1
Newbie
 
Joined: Dec 2016
From: Việt Nam

Posts: 2
Thanks: 0

Calculation limit

I'm trying to figure out how to find the limit of (ln x / ln(x+1) )^xlnx , as x approaches infinity . The result is 1/e .How do I approach this?
P/s : I'm not good eng, so sorry if have anything bad
shenlong1234 is offline  
 
December 8th, 2016, 12:03 AM   #2
Member
 
Joined: Apr 2015
From: USA

Posts: 46
Thanks: 32

You can use the approximation that $\ln(1+x)\approx x$ when $x$ approaches zero.

To figure out the limit, first take the log. As a placeholder for the limit, let

$\begin{align}y&=\left[\frac{\ln x}{\ln(x+1)}\right]^{x\,\ln x}\cr
\ln y&=x\,\ln x\cdot\ln\left[\frac{\ln x}{\ln(x+1)}\right]\cr
&=x\,\ln x\cdot\ln\left[\frac{\ln x}{\ln\left(x\{1+\frac{1}{x}\}\right)}\right]\cr
&=x\,\ln x\cdot\ln\left[\frac{\ln x}{\ln x+\ln\{1+\color{red}{\frac{1}{x}}\}}\right]\cr
\end{align}$

Since $x\to\infty$ and $\color{red}{\frac{1}{x}}$ approaches zero, we can use the approximation above.

$\begin{align}\ln y&\approx x\,\ln x\cdot\ln\left[\frac{\ln x}{\ln x+\color{red}{\frac{1}{x}}}\right]\cr
&\approx x\,\ln x\cdot\ln\left[\frac{\ln x+\frac{1}{x}}{\ln x+\frac{1}{x}}+\frac{-\frac{1}{x}}{\ln x+\frac{1}{x}}\right]\cr
&\approx x\,\ln x\cdot\ln\left[1+\frac{-\frac{1}{x}}{\ln x+\frac{1}{x}}\right]\cr
\end{align}$

The $\frac{-\frac{1}{x}}{\ln x+\frac{1}{x}}$ also approaches zero. Use the approximation above, again.

$\begin{align}\ln y&\approx x\,\ln x\cdot\left[\frac{-\frac{1}{x}}{\ln x+\frac{1}{x}}\right]\qquad\text{The addition of }\frac{1}{x}\text{ is negligible compared to }\ln x\text{, so}\cr
&\approx x\,\ln x\cdot\left[\frac{-\frac{1}{x}}{\ln x}\right]\cr
&\approx x\,\cancel{\ln x}\cdot\left[\frac{-\frac{1}{x}}{\cancel{\ln x}}\right]\cr
&\approx x\cdot\left[-\frac{1}{x}\right]\cr
&\approx -1\cr
y&\approx e^{-1}\cr
\end{align}$
Thanks from SenatorArmstrong
limiTS is offline  
December 8th, 2016, 04:21 AM   #3
Newbie
 
Joined: Dec 2016
From: Việt Nam

Posts: 2
Thanks: 0

That's great. thank you very much
shenlong1234 is offline  
Reply

  My Math Forum > College Math Forum > Calculus

Tags
calculation, limit



Thread Tools
Display Modes


Similar Threads
Thread Thread Starter Forum Replies Last Post
Limit calculation evol_w10lv Calculus 2 April 25th, 2016 02:56 PM
fun limit calculation icemanfan Real Analysis 3 September 10th, 2012 12:02 PM
Limit calculation icemanfan Calculus 2 March 9th, 2012 07:30 PM
Limit calculation Ockonal Calculus 2 December 7th, 2011 07:04 PM
Limit calculation Crouch Calculus 2 December 30th, 2010 02:39 AM





Copyright © 2019 My Math Forum. All rights reserved.