
Calculus Calculus Math Forum 
 LinkBack  Thread Tools  Display Modes 
October 23rd, 2016, 12:27 PM  #1 
Newbie Joined: Oct 2013 Posts: 20 Thanks: 0  How derive new class of polynomials?
We have $\displaystyle g_n(x_0)$ which is composition of functions $\displaystyle f_i(x_0,x_1,...x_{i1}), i=1..n$ where $\displaystyle f_i(...)$ are basic arithmetic operations (add, sub, mul) on $\displaystyle x_k$ and constants. For example: $\displaystyle x_1 = 2\cdot x_0*x_0 + x_0+0.567$ $\displaystyle x_2 = x_0x_1 + x_1 + 0.341$ $\displaystyle x_3 = 3.2x_2x_2+x_1+x_0$ this way is simply to reach polynomial degree of $\displaystyle 2^n$ using only n multiplications. Where this can be used ? In approximation of nonrational functions like tangent, arcus tangent or cosinus. Algorithm of Remez enable to find optimal polynomial degree n, but if is required big accuracy (>double) these polynomials have high degrees. How is possible restrict all polynomials of degree 60 to polynomials derived by above formula with max 6 or 7 multiplications? and how to find optimal approximation polynomial only inside this narrow class of polynomials? Generalization of this wil is adding operation "divide" and obtaining rational expressions. Fast formula of sqrt just generates high degree rational expressions. If would be possible find optimals rational expressions narorwed to ndiv, kmul, computing of nonrational functions like sinus or tangent would be fast as computing sqrt. 

Tags 
class, derive, polynomials 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Derive the Value of 'e'  VisionaryLen  Calculus  28  September 2nd, 2016 01:39 PM 
Help me derive this.  PlzzHelp  Algebra  1  November 18th, 2015 10:08 AM 
Derive  marifb  Calculus  1  June 12th, 2015 02:37 PM 
Derive this  dudetheman  Calculus  2  January 18th, 2012 11:44 AM 
Derive x/y  instereo911  Calculus  2  October 8th, 2009 02:55 PM 