November 26th, 2012, 09:20 PM  #1 
Senior Member Joined: Aug 2012 From: South Carolina Posts: 866 Thanks: 0  another mind twister
The derV of f(x) = xe^x  e^x f "(x) = [ xe^x + e^x ] e^x  book says we got this via the product & Difference Rules I can't see it; a little help please 
November 26th, 2012, 09:29 PM  #2 
Senior Member Joined: Jul 2010 From: St. Augustine, FL., U.S.A.'s oldest city Posts: 12,155 Thanks: 461 Math Focus: Calculus/ODEs  Re: another mind twister
If then: 
November 26th, 2012, 09:42 PM  #3 
Senior Member Joined: Aug 2012 From: South Carolina Posts: 866 Thanks: 0  Re: another mind twister
Mark I am trying to apply the product rule. Would you be so kind to show me the first times the derV of the second + the second times the derV of the first so that I can see what I am not seeing? It is very embarrassing to keep having the trouble in algebra sometimes I think I have a wet brain or something 
November 26th, 2012, 09:48 PM  #4 
Senior Member Joined: Jul 2010 From: St. Augustine, FL., U.S.A.'s oldest city Posts: 12,155 Thanks: 461 Math Focus: Calculus/ODEs  Re: another mind twister
What is where ?

November 26th, 2012, 09:52 PM  #5 
Senior Member Joined: Aug 2012 From: South Carolina Posts: 866 Thanks: 0  Re: another mind twister
Not familiar with ER symbols you used on the right, but I do believe that the derV of ke^x is just e^x the k being constant goes away and in finding the derV of exponential fx's we do the chain rule... so derV of e^x is just e^x and the chain rule would be either 1 or zero gosh I'm reaching hard Mark 
November 26th, 2012, 10:06 PM  #6 
Senior Member Joined: Jul 2010 From: St. Augustine, FL., U.S.A.'s oldest city Posts: 12,155 Thanks: 461 Math Focus: Calculus/ODEs  Re: another mind twister
No, the constant doesn't go away, what we have is (and the symbols just mean k is a real constant): So, when you use this rule along with the product rule, what do you get? 
November 26th, 2012, 10:11 PM  #7 
Senior Member Joined: Aug 2012 From: South Carolina Posts: 866 Thanks: 0  Re: another mind twister
Hey I don't know if I posted wrong but you have first derV and then 2nd derV; my post is f(x) and then f '(x). 
November 26th, 2012, 10:53 PM  #8 
Senior Member Joined: Jul 2010 From: St. Augustine, FL., U.S.A.'s oldest city Posts: 12,155 Thanks: 461 Math Focus: Calculus/ODEs  Re: another mind twister
Your first post says the derivative is such and such, then the second derivative is...that's what I was going by. But, differentiating a function is the same no matter what we call it.

November 27th, 2012, 02:30 AM  #9 
Global Moderator Joined: Dec 2006 Posts: 16,605 Thanks: 1201 
The symbol ? means "is in" (in the sense of "is an element of") and is the set of real numbers, so k ? effectively means "k is real". However, k isn't needed for this problem. Let u = x and v = e^x, so that uv = xe^x. The derivatives of x and e^x are 1 and e^x respectively, so by the product rule, the derivative of uv = u(dv/dx) + v(du/dx) = x(e^x) + (1)e^x = xe^x + e^x. Using the above, xe^x  e^x can now be differentiated by the difference rule to give (xe^x + e^x)  e^x. 
November 27th, 2012, 08:58 PM  #10 
Senior Member Joined: Aug 2012 From: South Carolina Posts: 866 Thanks: 0  Re: another mind twister
Mark, this is my mistake. It does say this is derV and then goes on to show the 2nd derV. 

Tags 
mind, twister 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
never mind, sorry  ElMarsh  Real Analysis  1  October 24th, 2009 06:32 PM 
Another integration devestating my mind and soul  sameapple  Calculus  3  January 24th, 2009 05:20 AM 
never mind  i got it  tomotomo  Algebra  1  July 30th, 2008 05:37 AM 
A prodigious mind behind the numbers !!!  cknapp  Algebra  0  June 22nd, 2008 06:24 AM 
Mindbleeding problem  Mathtard  Algebra  2  October 11th, 2007 03:31 AM 