
Calculus Calculus Math Forum 
 LinkBack  Thread Tools  Display Modes 
June 5th, 2010, 06:05 PM  #1 
Newbie Joined: Jun 2010 Posts: 2 Thanks: 0  Deriving the series of e using binomial theorem
I need help understanding how the series of e derives into the exponential series using the binomial theorem. Here is a link to a pic of a page in my book, regarding the exponential series: http://i46.tinypic.com/qz0oat.jpg A couple of questions: Where does the [1 + (1/k)]^k come from and why is it used? Could you clarify the expansion of [1+(1/k)]^k? I don't understand how it gets to ... k(1/k) + k(k1)/2! (1/k^2) + ... How does it end up with a 1 + 1 + 1[1(1/k)]/2! + ... Why are you finding the limit of the series? And finally how do you end up with exponential series x^n /n! = 1 + x + x^2/2! + ... ? I'm confused and just really don't understand why or how you end up with everything. Try and keep it simple, please. Help is VERY appreciated. 
June 6th, 2010, 06:07 AM  #2 
Senior Member Joined: Apr 2008 Posts: 435 Thanks: 0  Re: Deriving the series of e using binomial theorem
First, let me talk briefly about the nature of math. There is much more to math than simple rote memorization and arithmetic, no matter how complicated. There are moments of insight and creativity in the creation of new math, just as in other fields of research. So the answer to your first question, why is (1 + 1/k)^k used, is unfortunately unsatisfying. It is used because it works and yields the correct answer. How did someone first come up with this? That's a real mystery  it was quite an insight. Let's put things in the right context. You have a definition for e, which is that power series 1 + 1 + 1/2 + ... The point of this page is that if you happen to look at (1 + 1/k)^k using the binomial theorem, as k goes to infinity, we happen to get that series 1 + 1 + 1/2 + ... and accordingly we get e. But let's clarify the arithmetic involved, too. It's actually not so bad. Here is the binomial theorem. Follow it exactly to get the expansion of (1 + 1/k)^k. Then, the book simplifies the terms. For example, in the second term Only by distributing the 1/k^2 term. Does that solve everything? 
June 6th, 2010, 07:11 AM  #3 
Global Moderator Joined: Oct 2008 From: London, Ontario, Canada  The Forest City Posts: 7,981 Thanks: 1166 Math Focus: Elementary mathematics and beyond  Re: Deriving the series of e using binomial theorem 
June 6th, 2010, 04:51 PM  #4 
Newbie Joined: Jun 2010 Posts: 2 Thanks: 0  Re: Deriving the series of e using binomial theorem
WOW! Thanks Jason for the indepth post. That clears up pretty much everything I was confused about. One question though, could you explain why in the exponential series you replace the 1's with an x^n? I'm not that much of a math genius 
June 7th, 2010, 12:25 AM  #5 
Senior Member Joined: Apr 2008 Posts: 435 Thanks: 0  Re: Deriving the series of e using binomial theorem
When we think of the Taylor series expansion for e^x, we think of 1 + x + (1/2)x^2 + ... I believe you are asking why in this expansion, we have all the xterms. Unfortunately, as far as I know, there is no way to derive the series expansion from the series 1 + 1 + 1/2 + ... Instead, using Taylor's Formula from calculus, it is possible to derive 1 + x + (1/2)x^2 + ... and then, by plugging in 1 for x, we get the stated expansion for the value of e. 

Tags 
binomial, deriving, series, theorem 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Using the Binomial Theorem to write a power series  brh27  Calculus  2  November 13th, 2012 09:24 PM 
Binomial theorem  chocolate  Probability and Statistics  1  April 16th, 2012 09:34 AM 
Use a Binomial series only to calculate the Maclaurin series  maliniarz  Probability and Statistics  1  December 8th, 2010 07:14 PM 
Binomial Theorem  coolhandluke  Applied Math  4  March 25th, 2010 05:21 AM 
Help in binomial theorem  John G  Applied Math  1  January 12th, 2009 02:40 PM 