- **Applied Math**
(*http://mymathforum.com/applied-math/*)

- - **Vector field, curl and divergence question**
(*http://mymathforum.com/applied-math/39464-vector-field-curl-divergence-question.html*)

Vector field, curl and divergence question1 Attachment(s) Hi, I'm having a little trouble interpreting the first part of the problem, consequently I don't really know how to find v(x, y, z). What I interpret is that the fluid is rotating around the z-axis (since it says that the rotation is in the xy-plane), so the vector v would be v=(Vx, Vy, 0) and since it's counter clock-wise then it would become V=(-wx, -wy, 0). Is this correct or am I missing something? |

Re: Vector field, curl and divergence questionYes, v_z = 0. But you don't need to introduce a new variable like w. You have to determine v_x and v_y with correct sign. Think in polar coordinate system if necessary. If you pick up a point, its orbit will be a circle. The velocity is always perpendicular to the radii, that is the tangential. You can find the length of the velocity considering that the omega is consant: | v|=omega*|r|. So make a sketch and try to find the component of v. |

Re: Vector field, curl and divergence questionWell yeah, what I meant by "w" was omega. Since I don't have the Greek letters here I used the one that looks like it. |

All times are GMT -8. The time now is 01:59 PM. |

Copyright © 2019 My Math Forum. All rights reserved.