My Math Forum  

Go Back   My Math Forum > College Math Forum > Applied Math

Applied Math Applied Math Forum

LinkBack Thread Tools Display Modes
March 21st, 2017, 11:55 AM   #1
Joined: Jun 2015
From: Warwick

Posts: 37
Thanks: 1

A particle projected in an upwards direction with resistance $\frac{gv}{V}$.

A particle is projected upwards in a medium whose resistance is $\frac{gv}{V}$, where $v$ is the velocity. If $V$ is large compared to $U$, which is the velocity of projection, show that the fraction of the value of the vertical height $h$ reached by the particle is described as $$\frac{2U}{3V}$$ and the fraction of the value of the ascent time is $$\frac{U}{2V}$$ and the fraction of the valure of the decent time is $$\frac{U}{6V}$$ when there is no resistance.

$V$ can be taken as the terminal velocity of the particle, although the question does not state this. The particle could reach the terminal velocity on its way upwards, before its return journey.

Prove that the particle returns to the point of projection with the velocity $$U(1- \frac{2U}{3V})$$

Can anyone derive the above results from the projectile equation for projecting a particle vertically upwards or would you set up and solve a differential equation?

Last edited by Statistics132; March 21st, 2017 at 12:04 PM.
Statistics132 is offline  

  My Math Forum > College Math Forum > Applied Math

$fracgvv$, direction, particle, projected, resistance, upwards

Thread Tools
Display Modes

Similar Threads
Thread Thread Starter Forum Replies Last Post
Simplify [MATH]\frac{1}{m-1}+\frac{9}{2m+3}-\frac{8}{m+4}[/MATH] Chikis Algebra 6 July 15th, 2014 06:16 PM
In what situation frac of limits equals to limit of frac? stainburg Calculus 17 November 24th, 2013 01:14 AM
Projected Annual Yield keystone Economics 1 July 6th, 2012 07:14 PM
Concavity upwards or downwards fantom2012 Calculus 3 April 22nd, 2012 12:57 PM
z distance from a projected (x,y) point konkeroc Algebra 0 April 27th, 2011 07:26 AM

Copyright © 2017 My Math Forum. All rights reserved.