My Math Forum problem in logarithms

 Algebra Pre-Algebra and Basic Algebra Math Forum

 September 19th, 2014, 08:36 AM #1 Newbie   Joined: Sep 2014 From: india Posts: 1 Thanks: 0 problem in logarithms Hello every one, I have a problem to solve following logarithms prove that 7 Log(20/9)-2 Log(25/24)-3 Log(81/80)= Log(2) I will get 8 Log(2) instead of Log(2) Would you plz help me to solve this? Last edited by skipjack; September 19th, 2014 at 02:47 PM.
 September 19th, 2014, 09:13 AM #2 Senior Member   Joined: Apr 2014 From: Glasgow Posts: 2,157 Thanks: 732 Math Focus: Physics, mathematical modelling, numerical and computational solutions I get $\displaystyle 2 \log \left(\frac{5^3 \times 2^{16}}{3^{12}}\right)$ However, if your question is Work out $\displaystyle 7 \log \left(\frac{20}{9}\right) - 2 \log \left(\frac{24}{25}\right)$ + $\displaystyle 3 \log \left(\frac{81}{80}\right)$, i.e. with a plus sign on the third term, I get $\displaystyle 8\log 2$. If that change in sign doesn't explain it, you probably accidentally added some powers on the 2 rather than multiplying them when reducing down the $\displaystyle 24^2, 20^7$ or $\displaystyle 80^3$ parts.
 September 19th, 2014, 02:54 PM #3 Global Moderator   Joined: Dec 2006 Posts: 20,929 Thanks: 2205 7log(10/9) - 2log(25/24) + 3log(81/80) = log(2) Thanks from topsquark

 Tags logarithms, problem

### 7log(10/9)_2log(25/24) 3log(81/80)

Click on a term to search for related topics.
 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post Mr Davis 97 Algebra 1 May 3rd, 2014 06:34 PM vic Algebra 1 January 4th, 2013 02:15 PM empiricus Algebra 8 July 9th, 2010 08:31 AM adhiluhur Algebra 1 June 13th, 2010 03:00 AM qcom Algebra 2 March 20th, 2010 09:28 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top