My Math Forum Square Roots

 Algebra Pre-Algebra and Basic Algebra Math Forum

 May 22nd, 2014, 10:38 AM #1 Newbie   Joined: May 2014 From: Na Posts: 1 Thanks: 0 Square Roots Can someone help me out here. What is the difference between -√(x-2)^2 and √(x-2)^2. I'm using khan academy to learn algebra 2 and this showed up on one of the problems to make a function inverse. Link to the problem itself below. https://www.khanacademy.org/math/alg...rses-example-3
 May 22nd, 2014, 01:26 PM #2 Senior Member   Joined: Jul 2013 From: United Kingdom Posts: 471 Thanks: 40 Well there's a big difference between the two expressions. If x=3, $\displaystyle -\sqrt { { \left( 3-2 \right) }^{ 2 } } =-\sqrt { 1 } =-1$ $\displaystyle \sqrt { { \left( 3-2 \right) }^{ 2 } } =\sqrt { 1 } =1$ Take a look at this graph: https://www.desmos.com/calculator/qohzruuclo
 May 22nd, 2014, 02:04 PM #3 Senior Member   Joined: Jul 2013 From: United Kingdom Posts: 471 Thanks: 40 Ok... $\displaystyle f\left( x \right) =y={ \left( x-1 \right) }^{ 2 }-2\quad \{ x\le 1\} \\ \\ When\quad x=1,\quad y=-2\\ \\ When\quad x\rightarrow \infty ,\quad y\rightarrow \infty \quad \therefore \quad f\left( x \right) \ge -2\\ \\ Now...\\ \\ y={ \left( x-1 \right) }^{ 2 }-2\\ \\ { \left( x-1 \right) }^{ 2 }=y+2\\ \\ x-1=\pm \sqrt { y+2 } \\ \\ x=\pm \sqrt { y+2 } +1\\ \\ \therefore \quad f^{ -1 }\left( x \right) =\sqrt { x+2 } +1\quad or...\quad f^{ -1 }\left( x \right) =-\sqrt { x+2 } +1\\ \\ but\quad domain\quad of\quad f^{ -1 }\left( x \right) \quad is\quad \{ x\ge -2\} ,\quad and\quad f^{ -1 }\left( x \right) \le 1\\ \\ \sqrt { x+2 } +1\le 1\\ \\ \sqrt { x+2 } \le 0\\ \\ x+2\le 0\\ \\ x\le -2\quad but\quad domain\quad of\quad f^{ -1 }\left( x \right) \quad is\quad \{ x\ge -2\} \\ \\ \therefore \quad f^{ -1 }\left( x \right) =-\sqrt { x+2 } +1\quad \{ x\ge -2\} \quad f^{ -1 }\left( x \right) \le 1\\ \\$ Graph Demonstration: https://www.desmos.com/calculator/1vh56wxriv

 Tags roots, square

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post fe phi fo Elementary Math 4 May 13th, 2013 07:21 PM drewm Algebra 4 July 16th, 2011 08:35 PM drewm Algebra 3 July 16th, 2011 07:09 PM micheal2345 Algebra 11 November 8th, 2009 07:41 AM romeroom Algebra 7 March 17th, 2009 01:53 PM

 Contact - Home - Forums - Cryptocurrency Forum - Top