My Math Forum  

Go Back   My Math Forum > High School Math Forum > Algebra

Algebra Pre-Algebra and Basic Algebra Math Forum


Reply
 
LinkBack Thread Tools Display Modes
May 2nd, 2014, 04:38 AM   #1
Senior Member
 
Joined: Nov 2013

Posts: 434
Thanks: 8

sum

find sum
2.1+3.2+4.4+5.8+......................18.2^16
mared is offline  
 
May 2nd, 2014, 12:35 PM   #2
Global Moderator
 
Joined: May 2007

Posts: 6,727
Thanks: 687

Arithmetico-geometric sequence - Wikipedia, the free encyclopedia

Above includes a general formula. Your question is a special case.
mathman is offline  
May 2nd, 2014, 01:23 PM   #3
Math Team
 
Joined: Dec 2006
From: Lexington, MA

Posts: 3,267
Thanks: 408

Hello, mared!

Quote:
$\displaystyle \text{Find the sum: }\;2\!\cdot\!1+3\!\cdot\!2+4\!\cdot\!4+5\!\cdot\!8 + \cdots + 18\!\cdot\!2^{16}$

We are given: $\displaystyle \;\;\;S \;=\;2\!\cdot\!2^0+3\!\cdot\!2^1+4\!\cdot\!2^2+5\! \cdot\!2^3 + \cdots + 18\!\cdot\!2^{16}$
Multiply by 2: $\displaystyle \;\;2S \;=\; \qquad \quad 2\!\cdot\!2^1 + 3\!\cdot\!2^2 + 4\!\cdot\!2^3 + \cdots + 17\!\cdot\!2^{16} + 18\!\cdot\!2^{17} $

Subtract: $\displaystyle \quad\;\;\; -S \;=\;2 + \underbrace{(2 + 2^2 + 2^3 + \cdots + 2^{16})}_{\text{geo. series}} - 18\!\cdot\!2^{17}$

$\displaystyle \qquad$The geometric series has sum: $\displaystyle \;2(2^{16}-1)$

We have: $\displaystyle \;-S \;=\;2 + 2(2^{16}-1) - 18\!\cdot\!2^{17}$

$\displaystyle \qquad\qquad\; -S \;=\;2 + 2^{17} - 2 - 18\!\cdot\!2^{17}$

$\displaystyle \qquad\qquad\; -S \;=\;-17\!\cdot\!2^{17}$

Therefore: $\displaystyle \;S \;=\;17\!\cdot\!2^{17}$

soroban is offline  
Reply

  My Math Forum > High School Math Forum > Algebra

Tags
sum



Thread Tools
Display Modes






Copyright © 2019 My Math Forum. All rights reserved.