April 12th, 2018, 08:13 AM  #11 
Senior Member Joined: May 2016 From: USA Posts: 1,050 Thanks: 430  Yes $1 \le a < 10,\ a \in \mathbb R,\ n,\ x \in \mathbb Z,\ n \ge 0, \text { and } x = a * 10^n \implies$ $\text { there are exactly } n + 1 \text { digits in } x.$ $2.03 * 10^{90} < 2^{300} < 2.04 * 10^{90} \implies$ $(2.03 * 10^{90})^4 < (2^{300})^4 < (2.04 * 10^{90})^4 \implies$ $2.03^4 * 10^{360} < 2^{1200} < 2.04^4 * 10^{360}) \implies$ $ 16.98 * 10^{360} < 2^{1200} < 17.32 * 10^{360}) \implies$ $2^{1200} \approx 17 * 10^{360} = 1.7 * 10^{361} \implies$ $x \text { has exactly } 361 + 1 = 362 \text { digits.}$ 

Tags 
amount, calculator, digits 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
A creative android calculator : Blocks Scientific Calculator  CoarxFlow  Math Software  5  August 26th, 2016 08:37 PM 
Amount  Chikis  Elementary Math  11  October 22nd, 2013 04:55 PM 
amount of combinations  gelatine1  Algebra  10  July 15th, 2013 06:00 PM 
Multiplying 4 digits with 3 digits and vice versa  CarpeDiem  Elementary Math  7  July 13th, 2012 07:35 PM 
find the amount of ....  autumnsandsprings  Algebra  2  May 11th, 2012 02:26 AM 