
Advanced Statistics Advanced Probability and Statistics Math Forum 
 LinkBack  Thread Tools  Display Modes 
May 6th, 2009, 12:32 AM  #1 
Newbie Joined: May 2009 Posts: 2 Thanks: 0  Help with a Markovian chain, Liner programming and Probabili I’m preparing for a final and I’ve stumbled upon the following problems that I just can’t get right. Any help with them will be extremely appreciated! Markovian chain problems 1. A carnival man moves a pea among three shelves, A, B and C. Whenever the pea is under A, he moves it with equal probability to A or B( but not C) When it is under B, he is sure to move it to C. When the pea is under C, it is equally Likely to move it to A, B or C. 1. Set up a three state Markov chain by drawing the transition diagram and check whether it is regular 2. Find the transition matrix and evaluate the probabilities for the pea to be under each shell after two moves, if it is initially under C 3. Find the long range probabilities for the pea to be under each shell 4. Find the probabilities for the pea to be under each shell after two moves, if you know that it was initially under C and the next time it is not under B 2. A professor tries not to be late for class too often. If he is late some day, he is 90% sure to be on time the next time. If he is on time, the next day there is a 25% chance of his being late. In the long run, how often is he late for class? Linear programming A farmer owns a 200acre farm and can plant any combination of two crops 1 and 2. Crop 1 requires 1 manday of labor and $10 of capital per each acre planted, while crop 2 requires 4 mandays of labor and $20 capital per acre. The farmer has $2200 of capital and 320mandays of labor available for the year. Crop 1 produces $40 of net revenue and Crop 2 produces $60. a) Find the optimal strategy b) Because of some tricks on the stockmarket the price of Crop 2 begins growing up. What is the turning point of the price of Crop 2, when the farmer should recalculate the maximum revenue scheme? Probabilities 1.[Find the probability for the following poker hands: a) Full house which contains at most 2 Face cards b) Three of a kind, given that it contains exactly one club c) Four of a kind, given that is contains at least 3 red cards 2. An urn contains 2 Black and 4 Red balls. A sample of 2 balls is drawn and then withought replacement two more balls are pulled out a) Check whether the events: P: The balls of the first sample have the same colour And Q: The balls of the second draw have the same colour Are independent? b)Find the probabilities for each of the following: A: The balls of the first draw have the same color, given that both balls of the second sample are red B: The balls of the first draw have different color, given that the balls of the second one have different colour. 

Tags 
chain, liner, markovian, probabili, programming 
Thread Tools  
Display Modes  

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
The 5 chain problem  shunya  Elementary Math  3  October 14th, 2015 07:26 AM 
Analysis of a series of nonMarkovian queues  riccardo92  Advanced Statistics  0  June 12th, 2013 09:58 AM 
Help with R  Programming  blueberry  Math Software  0  February 18th, 2012 12:50 PM 
R programming help  katerinaaa  Math Software  0  March 24th, 2011 03:35 AM 
Fermat's Little Theorem and Liner Congruences  nooblet  Number Theory  0  February 11th, 2009 01:37 PM 