My Math Forum Expectation, Variance, Covariance

 November 19th, 2012, 08:34 AM #1 Member   Joined: May 2012 Posts: 60 Thanks: 0 Expectation, Variance, Covariance a.) Let X denote the price of a stock in one year from now. (More precisely, X denotes the value in one year of the amount of stock we can buy today with 1 dollar. So if today I invest k dollars in that stock, then in one year from now the value will be kX ). Let Y denote the price of another stock in one year from now. (Again the value in a year from now of 1 dollar invested today). Assume that E(X)=1.05 E(Y)=1.02 VAR(X)=0.16 VAR(Y)=0.04 COV(X,Y)=0.02 Assume that you invest 8 dollars into X and invest 2 into Y . So, the value of our investment in one year from now is Z. You keep the investment for the whole year without changing it. Calculate E(Z), VAR(Z) and assuming that Z is normal calculate P(Z?0) . b.) Find the best investment strategy if you are given 3 dollars to invest into X and Y. You can distribute those 3 dollars however you want. The goal is to maximize the expectation of Z. You are given the constrain to keep the risk under a certain level. That level is given by VAR(Z)?4 My attempt for a. To find E(Z) do I just use the fact that E(X)=1.05 and E(Y)=1.02 thus [E(X)+E(Y)]/2 =E(Z) ? The same goes for VAR(Z) ? For b. I know that the standard deviation for Z will be 2 since the variance is 4, but how will I be able to maximize the expectation.

 Thread Tools Display Modes Linear Mode

 Similar Threads Thread Thread Starter Forum Replies Last Post Juliayaho Advanced Statistics 1 October 1st, 2012 10:53 AM thekiterunner Advanced Statistics 3 August 10th, 2011 12:16 PM hendaz Algebra 2 May 23rd, 2010 01:57 PM hendaz Advanced Statistics 1 May 18th, 2010 01:13 PM Mike1173 Advanced Statistics 0 April 17th, 2009 03:01 AM

 Contact - Home - Forums - Cryptocurrency Forum - Top