- **Abstract Algebra**
(*http://mymathforum.com/abstract-algebra/*)

- - **Roots of a polynomial**
(*http://mymathforum.com/abstract-algebra/342840-roots-polynomial.html*)

Roots of a polynomialLet $L=\mathbb{Q}(\sqrt{2+\sqrt{3}})$. $L$ is a normal extension of $\mathbb{Q}$. >Express the roots of $m(x)=(x^2-2)^2-3$ (the minimal polynomial of $\alpha=\sqrt{2+\sqrt{3}}$ over $\mathbb{Q}$) in $\mathbb{Q}(\alpha)$ in terms of $\alpha$. Thanks. |

I am concerned that you show no attempt of your own to do these problems- and, the calculations, if you know the definitions are pretty straightforward.It should be obvious that if $\displaystyle (x- 2)^2- 3= 0$ then $\displaystyle (x- 2)^2= 3$ so that $\displaystyle x- 2= \pm\sqrt{3}$, $\displaystyle x= 2\pm \sqrt{3}$. With $\displaystyle \alpha= \sqrt{2+ \sqrt{3}}$ one of those roots, $\displaystyle 2+ \sqrt{3}$ is immediately $\displaystyle \alpha^2$. To find the other root, $\displaystyle 2- \sqrt{3}$, in terms of $\displaystyle \alpha$, note that $\displaystyle \alpha^2= 2+ \sqrt{3}$ so that $\displaystyle \sqrt{3}= \alpha^2- 2$ and then $\displaystyle 2- \sqrt{3}= 2- (\alpha^2- 2)= 4- \alpha^2$. (By the way- technically, equations have "roots", expressions have "zeros". Rather than "roots of $\displaystyle (x- 2)^2- 3$" you should have said either "the zeros of $\displaystyle (x- 2)^2- 3$" or "the roots of $\displaystyle (x- 2)^2- 3= 0$". I will confess that is being a little "hard-nosed".) |

Quote:
Quote:
________ As for the problem, firstly note that $m(x) = m(-x)$, so the roots will be $\pm \alpha, \pm \beta$ for some $\beta$. It's easy enough to compute beta explicitly (e.g. you could just find all the roots explicitly, or note that the product of the roots is the constant coefficient of $m(x)$). Once you've got that, work out $\alpha \beta$ and that'll give an easy way to write $\beta$ in terms of $\alpha$. |

All times are GMT -8. The time now is 03:00 AM. |

Copyright © 2019 My Math Forum. All rights reserved.